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TWINSCAN	model	for	gene	finding	in	
human	and	mouse	genomes

§ TWINSCAN	is	an	augmented	version	of	the	GHMM	used	
in	Genscan.

§ Input:	syntenic	regions	in	human	and	mouse	genome
– assumption:	the	gene	structure	(exon/intron	boundaries)	
is	conserved in	these	two	genomes,	and	the	conserved	
boundaries	are	aligned	precisely in	the	pairwise	genome	
alignment		

§ Output:	the	annotation	of	gene	structure



TWINSCAN	model

Human:     ACGGCGACUGUGCACGU
Mouse:     ACUGUGAC GUGCACUU
Alignment: ||:|:|||-||||||:|

intron exon

Why	using	multiple	sequences?

1)multiple	sequences	gives	strong	signal	(e.g.	if	a	sequence	
profile	of	a	splicing	site	is	preserved,	it	is	more	likely	to	be	a	true	
splicing	site);	and	more	importantly,
2)the	conservation	pattern	can	be	used	to	discriminate	exons	
and	introns:	exons	tend	to	be	more	conserved	than	introns.



TWINSCAN	algorithm
The	key	idea:	converting	a	pairwise	alignment	into	a	
single	observation	sequence	on	an	expanded	alphabet

1. Align	the	two	sequences	(e.g.	from	human	and	
mouse	genomes);
2. Use	the	similar	hidden	states	as	Genscan;
3. Design	a	new	“alphabet” for	observation	symbols:

4	x	3	=	12	symbols:
S =	{	A-,	A:,	A|,	C-,	C:,	C|,	G-,	G:,	G|,	U-,	U:,	U|	}	
gap	(	- ),	mismatch	(	:	),	match	(	|	)



Example

Human:     ACGGCGACUGUGCACGU
Mouse:     ACUGUGAC GUGCACUU
Alignment: ||:|:|||-||||||:|

Input	to	TWINSCAN	HMM	(observation	sequence)
A| C| G: G| C: G| A| C| U- G| U| G| C| A| C| G: U|

Recall, eE(A|) > eI(A|) and eE(A-) < eI(A-)
Likely	exon	will	be	annotated	for	the	entire	region



N-SCAN
§ GHMM in TWINSCAN outputs a target genomic 

sequence and a conservation sequence 
§ GHMM in N-SCAN outputs a target genomic 

sequence and N informant sequences
Target sequence

N-SCAN uses Bayesian 
network representation to 
calculate the probability of 
a column

Using multiple alignments to improve gene prediction. JCB, 2006



HMM	for	multiple	aligned	sequences
§ Strategy	1:	converting	the	alignment	of	multiple	
observation	sequences	into	one observation	
sequence
– New	alphabet	representing	convoluted observation	
symbols,	e.g.,	the	TWINSCAN	model

– Not	practical	for	n sequences:		the	size	of	the	alphabet	
grows	exponentially	with	O(2n).

§ Strategy	2:	employing	another	probabilistic	model	
to	emit	multiple	aligned	observation	sequences	
simultaneously	(Phylo-HMM	model)

§ Strategy	3:	emitting	multiple	aligned	observation	
sequences	simultaneously	but	independently,	each	
following	a	different	emission	probability	
distribution	(multivariate	HMM)



Phylo-HMMs:	model	multiple	alignments	
of	syntenic sequences

§ A	phylo-HMM	is	a	probabilistic	machine	that	generates	
a	multiple	alignment,	column	by	column,	such	that	each	
column	is	defined	by	a	phylogenetic	model

§ Unlike	single-sequence	HMMs,	the	“emission”
probabilities	of	phylo-HMMs	are	complex	distributions	
defined	by	phylogenetic	models

§ Molecular	evolution	can	be	viewed	as	a	combination	of	
two	Markov	processes
– One	operates	in	the	dimension	of	space (along	a	genome)
– One	operates	in	the	dimension	of	time (along	the	branches	of	a	

phylogenetic	tree)

§ Phylo-HMMs	combine	phylogeny	and	HMM



Single-sequence	HMM Phylo-HMM



Phylo-HMMs:	formal	definition

Templates for equations
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1 Equation for slides

Phylo-HMM

A phylo-HMM can be specified as ✓ = (S, , A, b),

1) S = {S1, S2, · · · , SM}, a set of states

2)  = { 1, 2, · · · , M}, a set of associated phylogenetic models

3) A = {ajk}(1  j, k  M), a matrix of state-transition probabilities

4) b = (b1, · · · , bM ), a vector of state-initial probabilities

ajk is the conditional probability of visiting state k at some site i given that state l is
visited at site i� 1. bj is the probability that state j is visited first.

HMM

p(S,X) = p(s1 · · · sL, x1 · · ·xL) =
LY

i=1

p(si|si�1)p(xi|si) =
LY

i=1

asi�1,siesi(xi) (1)

Simple models for gene prediction:

P (c|GC%) =
P (GC%|c)P (c)

P (GC%)
=

P (GC%|c)P (c)

P (GC%|c)P (c) + P (GC%|nc)P (nc)
(2)

P (nc|GC%) =
P (GC%|nc)P (nc)

P (GC%)
=

P (GC%|nc)P (nc)

P (GC%|c)P (c) + P (GC%|nc)P (nc)
(3)

P (GC%|c) =
Z x

0
f(x < GC%|c) (4)
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Questions we can ask using phylo-HMM

Templates for equations
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Phylo-HMM

A phylo-HMM can be specified as ✓ = (S, , A, b),

1) S = {S1, S2, · · · , SM}, a set of states

2)  = { 1, 2, · · · , M}, a set of associated phylogenetic models

3) A = {ajk}(1  j, k  M), a matrix of state-transition probabilities

4) b = (b1, · · · , bM ), a vector of state-initial probabilities

ajk is the conditional probability of visiting state k at some site i given that state l is
visited at site i� 1. bj is the probability that state j is visited first.

A path through the phylo-HMM is a sequence of states � = (�1, · · · ,�M ),
such that �i 2 {1, · · · ,M} for all 1  i  L.

The joint probability of a path and an alignment is,

p(�, X|✓) = b�1P (X1| �1)
LY

i=2

a�i�1,�iP (Xi| �i) (1)

The probability of the observation (likelihood) is,

p(X|✓) =
X

�

P (�, X|✓) (2)

The most probable (maxmum-likelihood) path,

�̂ = argmax
�

P (�, X|✓) (3)

1

Forward algorithm

Viterbi algorithm

The probability of 
emitting column i given 
a phylogenetic model



Phylogenetic	models

§ The	different	phylogenetic	models	associated	with	the	
states	of	a	phylo-HMM	may	reflect	different	overall	
rates	of	substitution	(e.g.	in	conserved	and	non-
conserved	regions),	different	patterns	of	substitution	
or	background	distributions,	or	even	different	tree	
topologies	(as	with	recombination)



Phylogenetic	models

:	substitution	rate	matrix
:	background	frequencies
:	binary	tree
:	branch	lengths

ψ j = (Qj,π j,τ j,β j )

 

Q j

 

p j

 

t j

 

b j

• The	model	is	defined	with	respect	to	an	alphabet	S of	size	
d

• The	substitution	rate	matrix	has	dimension	d	x	d
• The	background	frequencies	vector	has	dimension	d
• The	tree	has	n leaves,	corresponding	to	n	extant	taxa	in	the	
multiple	alignment	of	observation	sequences

• The	branch	lengths	are	associated	with	the	tree
• How	to	calculate	the	likelihood	of	a	column	given	a	model?

HKY	model



Brute force approach to likelihood calculation

Given a column AACT
Brute force strategy: Try all 16 combinations of ancestral states and sum



Pruning algorithm

Many calculations can be done just once,
and then reused many times

*The pruning algorithm was introduced by: Felsenstein, J. 1981. Evolutionary trees from DNA sequences:  
a maximum likelihood approach. Journal of Molecular Evolution 17:368-376

© Paul Lewis



P（X|Ψ)	(X:	a	column;	Ψ:	phylogenetic	model;	subscript	not	
shown	for	clarity)	can	be	computed	recursively	from	leaves	to	
root.	
Li(xi):	the	probability	of	observing	leaves	in	the	subtree	rooted	
by	i,	while	the	root	is	assigned	to	xi	(A,	T,	C	or	G),	

Pruning	algorithm

Li xi( ) = pxix j t j( )Lj x j( )
x j

∑
"
#
$

%$

&
'
$

($
× pxixk tk( )Lk xk( )

xk

∑
"
#
$

%$

&
'
$

($

j &	k: offspring	nodes	of	node	i
tj & tk: the	branch	lengths	
pa,b(t):	the	probability	to	observe	a	substitution	from	
a to	b within	the	evolution	time	of	t.	
The	total	probability	at	the	root	node	r:	 P(X |ψ) = Lr xr( )

xr

∑

xi

xj xk
j k

i
tj tk

Sum over all possible xj (A, T, C, or G)



Substitution	probabilities

§ Pruning	algorithm	requires	the	conditional	
probabilities	of	substitution	pa,b(t)	for	all	bases	a,b	Î S
and	branch	lengths	t	Î b

§ It	can	be	computed	using	a	continuous-time	Markov	
model	of	substitution,	defined	by	the	rate	matrix	Q	

P(b | a, t,ψ)Another	way	to	denote	this	probability:	

P(t) = (eQ )t = eQt

(matrix	multiplication)



Example

Substitution	matrices:	P(t=0.1)	P(t=0.2)

Branch	lengths:	t1=t2=t3=t4=t5=0.2;	t6=t7=t8=	0.1.

€ 

P(Xi |ψ j ) = P TCACC |T,t1,t2,t3,t4 ,t5,t6,t7,t8,κ( )
= π x0

Px0x6 t6( )Px0x8 t8( )Px6x7 t7( )Px7T t1( )Px7C t2( )Px6A t3( )Px8C t4( )Px8C t5( )[ ]
x8

∑
x7

∑
x6

∑
x0

∑

The likelihood and most probable path can be calculated using the forward and the
Viterbi algorithm, respectively.

An example for Pruning algorithm,

P (0.1) =

2

664

0.906563 0.045855 0.023791 0.023791
0.045855 0.906563 0.023791 0.023791
0.023791 0.023791 0.906563 0.045855
0.023791 0.023791 0.045855 0.906563

3

775

P (0.2) =

2

664

0.825092 0.084274 0.045317 0.045317
0.084274 0.825092 0.045317 0.045317
0.045317 0.045317 0.825092 0.084274
0.045317 0.045317 0.084274 0.825092

3

775

HMM

p(S,X) = p(s1 · · · sL, x1 · · ·xL) =
LY

i=1

p(si|si�1)p(xi|si) =
LY

i=1

asi�1,siesi(xi) (4)

Simple models for gene prediction:

P (c|GC%) =
P (GC%|c)P (c)

P (GC%)
=

P (GC%|c)P (c)

P (GC%|c)P (c) + P (GC%|nc)P (nc)
(5)

P (nc|GC%) =
P (GC%|nc)P (nc)

P (GC%)
=

P (GC%|nc)P (nc)

P (GC%|c)P (c) + P (GC%|nc)P (nc)
(6)

P (GC%|c) =
Z x

0
f(x < GC%|c) (7)

P (GC%|nc) =
Z 1

x
f(x > GC%|nc) (8)

R = log(
P (GC%|c)
P (GC%|nc)) (9)

✓ = {✓i} where i 2 {A, T,C,G}. ✓i is the probability of observing i at a position,P
✓i = 1.

argmax
x

P (x|e) (10)

R(S|P ) =
LY

i=1

(nisi/N)

bsi
(11)

2

T        C          A           G



Example
By	using	pruning	algorithm,	it	can	be	computed	through	Li(xi),	
from	leaves	to	root.

Summing	at	the	root,	
P=0.000509843

Initialization

Li(T) Li (C) Li (A) Li (G)

P(TCACC)?



Applications	of	Phylo-HMMs
§ Improving phylogenetic modeling that allow for 

variation among sites in the rate of substitution 
(Felsenstein & Churchill, 1996; Yang, 1995)

§ Protein secondary structure prediction (Goldman et 
al., 1996; Thorne et al., 1996)

§ Detection of recombination from DNA multiple 
alignments (Husmeier & Wright, 2001)

§ Comparative genomics (Siepel, et. al. Haussler, 
2005)--phastCons

§ Inferring sequence regions under functional 
divergence in duplicate genes (Huang & Golding, 
Bioinformatics, 2012)



phastCons
§ phastCons is based on a two-state phylogenetic hidden Markov 

model (phylo-HMM), with a state for conserved regions and a 
state for nonconserved regions; the free parameters of the 
model were estimated from a multiple alignment by maximum 
likelihood, using an EM algorithm. 

§ Developed for searching for conserved elements in vertebrate 
genomes, using genome-wide multiple alignments of five 
vertebrate species (human, mouse, rat, chicken, and Fugu 
rubripes)
– The predicted (conserved) elements cover roughly 3%–8% of the 

human genome (depending on the details of the calibration 
procedure) 

– HCEs (highly conserved elements) are associated with the 3′ 
UTRs of regulatory genes, stable gene deserts, and megabase-
sized regions rich in moderately conserved noncoding sequences. 
Noncoding HCEs also show strong statistical evidence of an 
enrichment for RNA secondary structure. 



State-transition diagram for the phylo-HMM used by phastCons, which consists of a state for 
conserved regions (c) and a state for nonconserved regions (n). 

Siepel A et al. Genome Res. 2005;15:1034-1050

Cold Spring Harbor Laboratory Press



PHAST & RPHAST

§ PHAST and RPHAST: phylogenetic analysis 
with space/time models (Brief Bioinform. 2011)
– http://compgen.bscb.cornell.edu/phast/
– http://compgen.bscb.cornell.edu/rphast/

§ Include phastCons, phastOdds, phyloP, dbless, 
etc



HMMDiverge

Inferring Sequence Regions under 
Functional Divergence in Duplicate Genes
Bioinformatics (2011)

An example with three states: 
M0 (no functional divergence)
M1 & M2 (with functional divergence)



Multivariate	HMM

S1 S2 SL-1 SL

X1,1 X2,1 XL-1 xL

M M M M
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XL,N

E2

EN

E1

E2

EN

E1

E2

EN

E1

E2

EN



Multivariate	HMM	(formal	
definition)

§ A	multivariate	HMM	θ	has	
– N sets	of	observation	symbols,	each	for	one	given	
observation	sequence	n	(n=1,	2,	…,	N)

– A	set	of	hidden	states	
– Transition	probabilities	aij,	for	any	pair	of	hidden	
states	i	and	j	

– Initial	probabilities	Bj=a0j for	any	hidden	states	j
– N sets	of	emission	probabilities	ens(xn)	for	the	
observation	symbol	being	emitted	in	the	nth	
observation	sequence	from	the	hidden	state	s.	



Multivariate	HMM
§ Given	N	observation	sequences	of	the	same	
length	L,	X={(x1,1…x1,L),	…,(xN,1…xN,L)}	and	the	
hidden	state	sequence	S=(s1…sL),	the	full	
probability	from	the	multivariate	HMM	is,

Let																																					,	the	multivariate	HMM	
can	be	reduced	to	conventional	HMM,	except	the	
observation	symbol	becomes	a	vector	(xn,1…xn,j)	
at	position	j.	The	same	algorithms	for	model	
inference	(Viterbi	and	forward/backward)	and	
learning	can	be	used.	

€ 

P S,X |θ( ) = asj−1s j es j xn, j( )
n=1

N

∏
% 

& 
' 

( 

) 
* 

j=1

L

∏

€ 

esi xn,1,...,xn, j( ) = esi xn, j( )
n=1

N

∏


