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TWINSCAN model for gene finding in
human and mouse genomes

TWINSCAN is an augmented version of the GHMM used
in Genscan.

Input: syntenic regions in human and mouse genome

assumption: the gene structure (exon/intron boundaries)
is conserved in these two genomes, and the conserved
boundaries are aligned precisely in the pairwise genome
alignment

Output: the annotation of gene structure



TWINSCAN model

Human: ACGGCGACUGUGCACGU
Mouse: ACUGUGAC GUGCACUU
Alignment: ||z I=111111:]|
\ J |
Y |
intron exon

Why using multiple sequences?

1)multiple sequences gives strong signal (e.g. if a sequence
profile of a splicing site is preserved, it is more likely to be a true
splicing site); and more importantly,

2)the conservation pattern can be used to discriminate exons
and introns: exons tend to be more conserved than introns.



TWINSCAN algorithm

The key idea: converting a pairwise alignment into a
single observation sequence on an expanded alphabet

Align the two sequences (e.g. from human and
mouse genomes);

Use the similar hidden states as Genscan;

Design a new “alphabet” for observation symbols:
4 x3 =12 symbols:

>={A-, A, A| C,6C,C|, G, G G|, U-, U; U| }
gap (- ), mismatch (:), match ( | )



Example

Human: ACGGCGACUGUGCACGU
Mouse: ACUGUGAC GUGCACUU
Alignment: |||z I=11F111]¢:]

Input to TWINSCAN HMM (observation sequence)

Al C| G: G| C: G| Al C| U- G| U|] G| C| A|] C| G: U|

Recall, ez (A]) > e;(A|) and ez (A-) < e;(A-)
Likely exon will be annotated for the entire region



N-SCAN

GHMM in TWINSCAN outputs a target genomic
sequence and a conservation sequence

GHMM in N-SCAN outputs a target genomic
sequence and N informant sequences

e Target sequence

N-SCAN uses Bayesian

network representation to
calculate the probability of
a column

FIG. 1. A phylogenetic tree relating chicken (C), human (H), mouse (M), and rat (R). The graph can also be
interpreted as a Bayesian network (left). The result of transforming the Bayesian network (right).

Using multiple alignments to improve gene prediction. JCB, 2006



HMM for multiple alighed sequences

Strategy 1: converting the alignment of multiple
observation sequences into one observation
seguence

New alphabet representing convoluted observation
symbols, e.g., the TWINSCAN model

Not practical for n sequences: the size of the alphabet
grows exponentially with O(2").

Strategy 2: employing another probabilistic model
to emit multiple aligned observation sequences
simultaneously (Phylo-HMM model)

Strategy 3: emitting multiple alighed observation
sequences simultaneously but independently, each
following a different emission probability
distribution (multivariate HMM)



Phylo-HMMs: model multiple alighments
of syntenic sequences

A phylo-HMM is a probabilistic machine that generates
a multiple alignment, column by column, such that each
column is defined by a phylogenetic model

Unlike single-sequence HMMs, the “emission”
probabilities of phylo-HMMs are complex distributions
defined by phylogenetic models

Molecular evolution can be viewed as a combination of
two Markov processes

One operates in the dimension of space (along a genome)

One operates in the dimension of time (along the branches of a
phylogenetic tree)

Phylo-HMMs combine phylogeny and HMM



Single-sequence HMM Phylo-HMM

Al 0.09
c|o.42
G| 0.39
T| 0.10 [*~
0.87
Al0.32
c|o.18
G| 0.27
T|0.23

TAACGGCA
X = TAACGGCAGA. .. X = TTAGGCAA >
AAGGCGCC




Phylo-HMMs: formal definition

A phylo-HMM can be specified as 6 = (S, v, A, b),
1) S={51,59,--,Sum}, aset of states
2) Y ={u1,¥2, -, ¥}, a set of associated phylogenetic models
3) A={ax}(1 <7k < M), amatrix of state-transition probabilities
4) b= (b, --,bnr), a vector of state-initial probabilities

aji 18 the conditional probability of visiting state k at some site ¢ given that state [ is
visited at site ¢ — 1. b; is the probability that state j is visited first.



Questions we can ask using phylo-HMM

A path through the phylo-HMM is a sequence of states ¢ = (¢1,- -, dar),
such that ¢; € {1,--- M} forall 1 <47 < L.

The joint probability of a path and an alignment is,

L
p(¢, X|0) = bﬁblP(Xl‘w@) Ha¢i—1>¢iP<Xi‘w¢i>

=2 The probability of

The probability of the observation (likelihood) is, emitting COIU”]” i given
a phylogenetic model

p(X|0) = ZP b, X10)

Forward algorithm
The most probable (maxmum-likelihood) path,

¢ = argmax P(¢, X |6)
? Viterbi algorithm



Phylogenetic models

The different phylogenetic models associated with the
states of a phylo-HMM may reflect different overall
rates of substitution (e.g. in conserved and non-
conserved regions), different patterns of substitution
or background distributions, or even different tree
topologies (as with recombination)



Phylogenetic models
wj=(Qj?‘7Tj9Tj7ﬁj) HKY model

Qj : substitution rate matrix
T ; :background frequencies q — | ™ TG KTy

‘] f\jn_.\'j TC,j —_ mT.j

T, : binary tree TAj KiTCj TGg  —
IB]. : branch lengths

The model is defined with respect to an alphabet X of size
d

The substitution rate matrix has dimension d x d

The background frequencies vector has dimension d

The tree has n leaves, corresponding to n extant taxa in the
multiple alignment of observation sequences

The branch lengths are associated with the tree

How to calculate the likelihood of a column given a model?



Brute force approach to likelihood calculation

A C A C A C A C
A T A T A T A T
A C A C A C A C
D
A T A T A T A T
A C A C A C A C
2
A T A T A T A T
A C A C A C A C
DS D
A T A T A T A T

Given a column AACT
Brute force strategy: Try all 16 combinations of ancestral states and sum



Pruning algorithm

C A C A C
Bl

T A T A T

C A C A C

Many calculations can be done just once,
and then reused many times

A T

*The pruning algorithm was introduced by: Felsenstein, J. 1981. Evolutionary trees from DNA sequences:

a maximum likelihood approach. Journal of Molecular Evolution 17:368-376
© Paul Lewis



Pruning algorithm
P (X|W) (X: a column; W: phylogenetic model; subscript not
shown for clarity) can be computed recursively from leaves to

root.
L(x;): the probability of observing leaves in the subtree rooted
by i, while the root is assigned to x; (A, T, C or G),

r--

L. (xl.) = %XE Pyx, (tj)Lj (xj )} X {XE D, (tk)Lk (xk)} J

Sum over all possible x; (A, T, C, or G)
j & k: offspring nodes of node i
t; & t,. the branch lengths
p, »(t): the probability to observe a substitution from
a to b within the evolution time of t.
The total probability at the root node r: P(X 1y)= ELr(Xr)



Substitution probabilities

Pruning algorithm requires the conditional
probabilities of substitution p, ,(t) for all bases a,b € X
and branch lengths t € 3

Another way to denote this probability: P(bla,t,1)

It can be computed using a continuous-time Markov
model of substitution, defined by the rate matrix Q

P(t)=(e%) =eY

(matrix multiplication)



Example

Substitution matrices: P(t=0.1) P(t=0.2)
] T C A G )
0.906563 0.045855 0.023791 0.023791
0.045855 0.906563 0.023791 0.023791
0.023791 0.023791 0.906563 0.045855
| 0.023791 0.023791 0.045855 0.906563 |

[ 0.825092 0.084274 0.045317 0.045317 ]
0.084274 0.825092 0.045317 0.045317
0.045317 0.045317 0.825092 0.084274
| 0.045317 0.045317 0.084274 0.825092 |

Branch lengths: t;=t,=t,=t,=t.=0.2; t.=t,=tg= 0.1.

P(X,19,) = P(TCACC T t,,t,,t,,t, sl gty g K)

= E E E E[”xopxox6 (16)Pyys, (1) P (1) P (1) P (12)P <t3)ngc(t4)ngc(t5)]

XgXg X7 Xg



Example

By using pruning algorithm, it can be computed through L(x,),
from leaves to root.

Li(T) |Li(C) |[Li(A) |Li(G)

0

[0.000112] 0.001838[0.000075 [ 0.000014

P(TCACC)?
Summing at the root,
P=0.000509843

[0.069533 [0.069533 | 0.002054]0.002054 |

zl / 12 \
/ BIRAEN
Initialization ToTo10] [0IL[010] efolilo] [o[ilofo] [o]ifo]o]

I:T 2:C 3 A 4 C 5:C



Applications of Phylo-HMMs

Improving phylogenetic modeling that allow for
variation among sites in the rate of substitution
(Felsenstein & Churchill, 1996; Yang, 1995)

Protein secondary structure prediction (Goldman et
al., 1996; Thorne et al., 1996)

Detection of recombination from DNA multiple
alignments (Husmeier & Wright, 2001)

Comparative genomics (Siepel, et. al. Haussler,
2005)--phastCons

Inferring sequence regions under functional
divergence in duplicate genes (Huang & Golding,
Bioinformatics, 2012)



phastCons

phastCons is based on a two-state phylogenetic hidden Markov
model (phylo-HMM), with a state for conserved regions and a
state for nonconserved regions; the free parameters of the
model were estimated from a multiple alignment by maximum
likelihood, using an EM algorithm.

Developed for searching for conserved elements in vertebrate
genomes, using genome-wide multiple alignments of five
vertebrate species (human, mouse, rat, chicken, and Fugu
rubripes)
The predicted (conserved) elements cover roughly 3%—-8% of the
human genome (depending on the details of the calibration
procedure)
HCEs (highly conserved elements) are associated with the 3'
UTRs of regulatory genes, stable gene deserts, and megabase-
sized regions rich in moderately conserved noncoding sequences.

Noncoding HCEs also show strong statistical evidence of an
enrichment for RNA secondary structure.



State-transition diagram for the phylo-HMM used by phastCons, which consists of a state for
conserved regions (c) and a state for nonconserved regions (n).

TCGCGACATATACGA. . .
iGCATGTGGGT . . .
AGCAGACGICCGCAA. . .

Siepel A et al. Genome Res. 2005;15:1034-1050

Cold Spring Harbor Laboratory Press



PHAST & RPHAST

PHAST and RPHAST: phylogenetic analysis
with space/time models (Brief Bioinform. 2011)

http://compgen.bscb.cornell.edu/phast/
http://compgen.bscb.cornell.edu/rphast/

Include phastCons, phastOdds, phyloP, dbless,
etc




HMMDiverge

Inferring Sequence Regions under

Original tree: /<>\

Functional Divergence in Duplicate Genes

Bioinformatics (2011)

/<>\/<>\/<>\
“E LR
)

An example with three states:
MO (no functional divergence)
M1 & M2 (with functional divergence)



Multivariate HMM

000




Multivariate HMM (formal
definition)

A multivariate HMM 0 has

N sets of observation symbols, each for one given
observation sequence n (n=1, 2, ..., N)

A set of hidden states

Transition probabilities a
states i and j

Initial probabilities B;=a,, for any hidden states |

N sets of emission probabilities e" (x.) for the
observation symbol being emitted in the nth
observation sequence from the hidden state s.

for any pair of hidden

i



Multivariate HMM

Given N observation sequences of the same
length L, X={(x; 1...X; ), ..., (Xy 1---Xy )} @nd the
hidden state sequence S=(s,...s|), the full
probability from the multlvarlate HMM is,

P(S,XIO)=H ]_[ (=, )

j=11 n=1

Let e, (xn,1 ..... xn,j) =nesl, (xn,j), the multivariate HMM
can be reduced t6 conventional HMM, except the
observation symbol becomes a vector (x;, ;...X, ;)
at position j. The same algorithms for model
inference (Viterbi and forward/backward) and
learning can be used.



