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Generative and 
discriminative models are 
different in their 
interpretability and 
prediction accuracy.

Generative	and	discriminative	models

the transcription factor binding problem



Generative	vs	discriminative	models
• The	generative	modelling	approach	offers	several	compelling	benefits.	

• The	generative	description	of	the	data	implies	that	the	model	parameters	have	well-defined	
semantics	relative	to	the	generative	process.	

• As	shown	in	 the	transcription	factor	binding	problem,	the	model	not	only	predicts	the	locations	to	which	a	
given	transcription	factor	binds	but	also	explains	why	the	transcription	factor	binds	there.	

• If	we	compare	two	different	potential	binding	sites,	we	can	see	that	the	model	prefers	one	site	over	another	
and	also	that	the	reason	is,	for	example,	the	preference	for	an	adenine	rather	than	a	thymine	at	position	7	of	
the	motif.	

• Generative	models	are	frequently	stated	in	terms	of	probabilities,	and	the probabilistic	
framework provides	a	principled	way	to	handle	problems	like missing	data.	

• For	example,	it	is	still	possible	for	a	PSFM	to	make	a	prediction	for	a	binding	site	where	one	or	more	of	the	
bound	residues	is	unknown.	This	is	accomplished	by	probabilistically	averaging	over	the	missing	bases.	

• The	output	of	the	probabilistic	framework	has	well-defined,	probabilistic	semantics,	and	this	can	be	helpful	
when	making	downstream	decisions	about	how	much	to	trust	a	given	prediction.

• The	primary	benefit	of	the	discriminative	modelling	approach	is	that	it	probably	
achieves	better	performance	than	the	generative	modelling	approach	with	infinite	
training	data

• In	practice,	analogous	generative	and	discriminative	approaches	often	converge	to	the	same	
solution

• generative	approaches	can	sometimes	perform	better	with	limited	training	data.	
• when	the	amount	of	labelled	training	data	is	reasonably	large,	the	discriminative	approach	will	
tend	to	find	a	better	solution



Incorporating	prior	knowledge

A simple, principled method for putting a probabilistic prior on a position-specific frequency 
matrix involves augmenting the observed nucleotide counts with pseudocounts and then 
computing frequencies with respect to the sum. The magnitude of the pseudocount
corresponds to the weight assigned to the prior.



Handling	heterogeneous	data

These diverse data types can be 
1) encoded into fixed-length 

features,
2) represented using pairwise 

similarities (that is, kernels) or 
3) directly accommodated by a 

probability model (e.g., 
Bayesian network).



Feature	selection
• In	practice,	it	is	important	to	distinguish	among	three	distinct	motivations	for	
carrying	out	feature	selection.	

• we	want	to	identify	a	very	small	set	of	features	that	yield	the	best	possible	classifier.	For	
example,	we	may	want	to	produce	an	inexpensive	way	to	identify	a	disease	phenotype	on	the	
basis	of	the	measured	expression	levels	of	a	handful	of	genes.	Such	a	classifier,	if	it	is	
accurate	enough,	might	form	the	basis	of	an	inexpensive	clinical	assay.	

• we	may	want	to	use	the	classifier	to	understand	the	underlying	biology.	In	this	case,	we	want	
the	feature	selection	procedure	to	identify	only	the	genes	with	expression	levels	that	are	
actually	relevant	to	the	task	at	hand	in	the	hope	that	the	corresponding	functional	
annotations	or	biological	pathways	might	provide	insights	into	the	aetiology of	disease.	

• We	often	simply	want	to	train	the	most	accurate	possible	classifier.	In	this	case,	we	hope	that	
the	feature	selection	enables	the	classifier	to	identify	and	eliminate	noisy	or	redundant	
features.	Researchers	are	often	disappointed	to	find	that	feature	selection	cannot	optimally	
perform	more	than	one	of	these	three	tasks	simultaneously.

• Feature	selection	is	especially	important	in	the	third	case	because	the	analysis	of	
high-dimensional	data	sets,	including	genomic,	epigenomic,	proteomic	or	
metabolomic data	sets,	suffers	from	the curse	of	dimensionality — the	general	
observation	that	many	types	of	analysis	become	more	difficult	as	the	number	of	
input	dimensions	(that	is,	data	measurements)	grows	very	large.



Feature	selection	approaches

• Three	main	categories:	Wrappers,	Filters,	Embedded	methods	



Wrappers

• Evaluate feature	sets;	select	a	subset	of	features	that	gives	the	best	
accuracy

• Exhaustive	search	->	Exponential	problem	(M	features,	2^M	subsets)
• Search	strategy

• Sequential	forward	selection	(evaluates	M(M+1)/2	instead	of	2^M	feature	
sets)

• Recursive	backward	elimination
• Simulated	annealing
• ….



Filters

• Replace	evaluation	of	models	with	quick-to-compute	statistics
• Examples	of	filtering	criterion

• Mutual	information	with	target	variable
• Correlation	with	the	target	variable
• chi-square	statistic



Imbedded	methods

• The	classifier	performs	feature	selection	as	part	of	the	learning	
procedure

• Example:	the	logistic	LASSO



Imbalanced	class	sizes:	Enhancer	prediction	
problem
• A	common	stumbling	block	in	many	applications	of	machine	learning	
to	genomics	is	the	large	imbalance	(or	label	skew)	in	the	relative	sizes	
of	the	groups	being	classified.	

• Enhancer	prediction	problem:	Starting	with	a	set	of	641	known	enhancers,	
the	genome	can	be	broken	up	into	1,000-bp	segments	and	each	segment	
assigned	a	label	('enhancer'	or	'not	enhancer')	on	the	basis	of	whether	it	
overlaps	with	a	known	enhancer.	This	procedure	produces	1,711	positive	
examples	and	around	3,000,000	negative	examples	— 2,000	times	as	many	
negative	examples	as	positive	examples.

• Assume	a	classifier	achieved	an	overall	accuracy	(that	is,	the	percentage	of	
predictions	that	were	correct)	of	99.9%.	The	accuracy	seems	good,	but	it	is	
not	an	appropriate	measure because	a	null	classifier	that	simply	predicts	
everything	to	be	non-enhancers	achieves	nearly	the	same	accuracy.



Enhancer	prediction	problem	(Cont.)
• It	is	more	appropriate	to	separately	evaluate sensitivity (i.e.,	the	fraction	of	
enhancers	detected)	and	precision (i.e.,	the	percentage	of	predicted	
enhancers	that	are	truly	enhancers).	The	balanced	classifier	described	above	
has	a	high	precision	(>99.9%)	but	a	very	low	sensitivity	of	0.5%.	

• The	behavior	of	the	classifier	can	be	improved	by	using	all	of	the	enhancers	
for	training	and	then	picking	a	random	set	of	49,000	non-enhancer	positions	
as	negative	training	examples.	However,	balancing	the	classes	in	this	way	
results	in	the	classifier	learning	to	reproduce	this	artificially	balanced	ratio.	
The	resulting	classifier	achieves	much	higher	sensitivity	(81%)	but	very	poor	
precision	(40%);	thus,	this	classifier	is	not	useful	for	finding	enhancers	that	
can	be	validated	experimentally	(too	many	false	positives)

• It	is	possible	to	trade	off	sensitivity	and	precision	while	retaining	the	training	
power	of	a	balanced	training	set	by	placing	weights	on	the	training	
examples.	For	example,	using	the	balanced	training	set	and	weighting	each	
negative	example	36	times	more	than	a	positive	example	during	training	
resulted	in	a	sensitivity	of	53%	with	a	precision	of	95%.



Performance	measure
• Precision:	true	positives/(true	positives	+	false	positives)
• Recall	(or	Sensitivity):	true	positives/(true	positives	+	false	negatives)
• F1	score:	the	harmonic	mean	of	precision	and	recall

F1	=	2	*	(precision	*	recall)	/	(precision	+	recall)

Image	credit:	scikit-learn	online	documents



Performance	measure
• In	general,	the	most	appropriate	performance	measure	depends	on	the	
intended	application	of	the	classifier.

• For	problems	such	as	identifying	which	tissue	a	given	cell	comes	from,	it	may	be	
equally	important	to	identify	rare	and	abundant	tissues,	and	so	the	overall	number	
of	correct	predictions	may	be	the	most	informative	measure	of	performance.	

• In	other	problems,	such	as	enhancer	detection,	predictions	in	one	class	may	be	more	
important	than	predictions	in	another.	For	example,	if	positive	predictions	will	be	
published	(and/or	experimentally	validated),	the	most	appropriate	measure	may	be	
the	sensitivity	among	a	set	of	predictions	with	a	predetermined	precision	(for	
example,	95%).	

• A	wide	variety	of	performance	measures	are	used	in	practice,	including	the	
F1 measure,	the	receiver	operating	characteristic	(ROC)	curve	and	the	
precision-recall	curve,	among	others.	Machine	learning	classifiers	perform	
best	when	they	are	optimized	for	a	realistic	performance	measure.



Handling	missing	data
• Missing	data	values

• missing	at	random	or	for	reasons	that	are	unrelated	to	the	task	at	hand	
• values	that,	when	absent,	provide	information	about	the	task	at	hand	(e.g.,	patients	become	
too	sick)

• Different	ways	to	deal	with	missing	data
• Impute	the	missing	values

• replacing	all	of	the	missing	values	with	zero
• Or	use	a	more	sophisticated	strategy	(e.g.,	Troyanskaya et	al used	the	correlations	between	data	values	to	

impute	missing	microarray	values)
• Include	in	the	model	information	about	the	'missingness'	of	each	data	point.	

• For	example,	Kircher et	al.	aimed	to	predict	the	deleteriousness	of	mutations	based	on	functional	
genomic	data.	For	each	feature,	the	authors	added	a	Boolean	feature	that	indicated	whether	the	
corresponding	feature	value	was	present.	The	missing	values	themselves	were	then	replaced	with	zeroes.	
An	advantage	of	this	approach	is	that	it	is	applicable	regardless	of	whether	the	absence	of	a	data	point	is	
significant	— if	it	is	not,	the	model	will	learn	to	ignore	the	absence	indicator.

• Use	probability	models	to	explicitly	model	missing	data	by	considering	all	the	potential	
missing	values.

• Missing	data	points	are	handled	by	summing	over	all	possibilities	for	that	random	variable	in	the	model.	
This	approach,	called	marginalization,	represents	the	case	in	which	a	particular	variable	is	unobserved.	
However,	marginalization	is	only	appropriate	when	data	points	are	missing	for	reasons	that	are	unrelated	
to	the	task	at	hand.	When	the	presence	or	absence	of	a	data	point	is	likely	to	be	correlated	with	the	
values	themselves,	incorporating	presence	or	absence	explicitly	into	the	model	is	more	appropriate.



Modelling	dependence	among	examples

Methods that infer each relationship 
in a network separately, such as by 
computing the correlation between 
each pair, can be confounded by 
indirect relationships. Methods that 
infer the network as a whole can 
identify only direct relationships. 
Inferring the direction of causality 
inherent in networks is generally 
more challenging than inferring the 
network structure



Moving	forward
• On	the	one	hand,	machine	learning	methods,	which	are	most	effective	in	the	analysis	
of	large,	complex	data	sets,	are	likely	to	become	ever	more	important	to	genomics	as	
more	large	data	sets	become	available	through	international	collaborative	projects,	
such	as	the	1000	Genomes	Project,	the	100,000	Genomes	Project,	ENCODE,	the	
Roadmap	Epigenomics Project	and	the	US	National	Institutes	of	Health's	4D	
Nucleome Initiative.	

• On	the	other	hand,	even	in	the	presence	of	massive	amounts	of	data,	machine	
learning	techniques	are	not	generally	useful	when	applied	in	an	arbitrary	manner.		In	
practice,	achieving	good	performance	from	a	machine	learning	method	usually	
requires	theoretical	and	practical	knowledge	of	both	machine	learning	methodology	
and	the	particular	research	application	area.	

• As	new	technologies	for	generating	large	genomic	and	proteomic	data	sets	emerge	—
pushing	beyond	DNA	sequencing	to	mass	spectrometry,	flow	cytometry	and	high-
resolution	imaging	methods	— demand	will	increase	not	only	for	new	machine	
learning	methods	but	also	for	experts	that	are	capable	of	applying	and	adapting	them	
to	big	data	sets.	In	this	sense,	both	machine	learning	itself	and	scientists	proficient	in	
these	applications	are	likely	to	become	increasingly	important	to	advancing	genetics	
and	genomics.
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