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Definitions

Probabilistic models

A model means a system that simulates the object under
consideration

A probabilistic model is one that produces different
outcomes with different probabilities (BSA)



Why probabilistic models

The biological system being analyzed is
stochastic

Or noisy

Or completely deterministic, but because a
number of hidden variables effecting its
behavior are unknown, the observed data might
be best explained with a probabilistic model



Figure 1. The Organization of the ENCODE Consortium.
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Probability

Experiment: a procedure involving chance that
leads to different results

Outcome: the result of a single trial of an
experiment

Event: one or more outcomes of an experiment

Probability: the measure of how likely an event
IS

Between O (will not occur) and 1 (will occur)



Example: a fair 6-sided dice

Outcome: The possible outcomes of this
experimentare 1, 2, 3,4,5and 6

Events: 1; 6; even

Probability: outcomes are equally likely to occur

P(A) = The Number Of Ways Event A Can Occur / The Total
Number Of Possible Outcomes

P(1)=P(6)=1/6; P(even)=3/6=1/2;



Random variable

Random variables are functions that assign a
unique number to each possible outcome of an

experiment

An example
Experiment: tossing a coin

Outcome space: {heads, tails}
1 if heads
X = { 0 if tails

More exactly, X is a discrete random variable
P(X=1)=1/2, P(X=0)=1/2



Probabillity distribution

Probability distribution: the assignment of a
probability P(x) to each outcome x.

A fair dice: outcomes are equally likely to occur
—> the probability distribution over the all six
outcomes P(x)=1/6, x=1,2,3,4,5 or 0.

A loaded dice: outcomes are unequally likely to
occur - the probability distribution over the all six
outcomes P(x)=f(x), x=1,2,3,4,5 or 6, but >_f(x)=1.



Probability mass function (pmf)

A probability mass function is a function that
gives the probability that a discrete random
variable is exactly equal to some value; it is often
the primary means of defining a discrete
probability distribution

An example

P(X) =4 1/2 tails

0 others

{ 1/2 heads



Probability density function (pdf)

Probability density functions (pdf) are for
continuous rather than discrete random

variables; f(x)
A pdf must be integrated over an interval to yield
a probability, since P(X =z) =0

P(angb):/bf(x)dx

Cumulative distribution function (cdf)
POX<a)= [ fod



Joint probability

Two experiments (random variables) X and Y
P(X,Y) = joint probability (distribution) of X and Y
P(X,Y)=P(X]Y)P(Y)=P(Y|X)P(X)

P(X]Y)=P(X), Xand Y are independent
Example: experiment 1 (selecting a dice),
experiment 2 (rolling the selected dice)

P(y): y=D1 or D2

P(i, D1)=P(i| D1)P(D1)

P(i| D1)=P(i| D2), independent events




The probability of a DNA sequence

Event: Observing a DNA sequence S=s1s2...Sn:
si € {A,C,G,T};

Random sequence model (or Independent and
identically-distributed, i.i.d. model): si occurs at

random with the probability P(si), independent
of all other residues in the sequence;

P(S)= []~Gs)
This model will be used as a background
model (or called a null hypothesis).



Marginal probability

The distribution of the marginal variables (the
marginal distribution) is obtained by marginalizing
over the distribution of the variables being discarded
(so the discarded variables are marginalized out)

Marginalizing means considering all possible
values the unknown variables may take, and
averaging over them

PIX)=SYPIYIP(Y)  Pla) = [ Pla.)dy
Example: experiment 1 (selecting a dice),

experiment 2 (rolling the selected dice)
P(y): y=D1 or D2
P(i) =P(i| D1)P(D1)+P(i| D2)P(D2)
P(i| D1)=P(i| D2), independent events
P(i)= P(i| D1)(P(D1)+P(D2))= P(i| D1)



Conditional probability

Conditioning the joint distribution on a particular
observation

Conditional probability P(X]Y): the measure of how
likely an event X happens under the condition Y,

P(x,y P(x,y
Plaly) = Do) — L0
P(y) | P(z,y)dy
Example: two dices D1, D2
P(iiD1) - probability for picking i using dice D1

P(i|D2) - probability for picking / using dice D2




Probability models

A system that produces different outcomes with
different probabilities.

It can simulate a class of objects (events),
assigning each an associated probability.

Simple objects (processes) = probability
distributions



Typical probability distributions

Binomial distribution
Gaussian distribution
Multinomial distribution
Poisson distribution
Dirichlet distribution



Binomial distribution

An experiment with binary outcomes: O or 1;

Probability distribution of a single experiment:
P(1’)=pand P(‘0") = 1-p;

Probability distribution of N tries of the same
experiment

N k N-k
Bi(k "1’ s out of N tries) ~[k jp (I=p)



Gaussian distribution

When N -> o0, Bi -> Gaussian distribution

The Gaussian (normal) distribution is a

continuous probability distribution with probability
density function defined as:

]. 1/ x— 2
. 2 p— _5( GM)
f(x7u7& ) O'\/%e

u: mean (expectation); g4 variance (o: the standard
derivation)

If we define a new variable u=(x-u)/o

fl@) ~ e )2




Gaussian distribution

10
: P=0, G?=0.2, ==
- H=0, 0?=10, == -
e H=0, 02=50, ="
- [=-2, 0?=0.5, ==

s
- \
s

— \"\ |

00

P 1 l 2 P P 1 l 2 e l L P Y i l 2 2 l " P

=5 -4 -3 -2 =1 0 1 2 3 B 5
X  Figure from Wikipedia

standard normal distribution when y = 0 and 02 =1




Multinomial distribution

An experiment with K independent outcomes
with probabilities 6, i =1,...,K, >.6/=1

Probability distribution of N tries of the same
experiment, getting ni occurrences of outcome /i, 2.ni

=N (n={n}).
P(n|d) = H o

M(n) _ nllng!---nK! o Hznz'

(2_k 1) B (2_k 1)




Example: a fair dice

Probability: outcomes (1,2,...,6) are equally
likely to occur

Probability of rolling 1 dozen times (12) and
getting each outcome twice:

12! (L)lz ~3.4x10-3
26\ 6



Example: a loaded dice

Probability: outcomes (1,2,...,6) are
unequally likely to occur: P(6)=0.5,
P(1)=P(2)=...=P(5)=0.1

Probability of rolling 1 dozen times (12) and
getting each outcome twice:
2(0.5)" x (0.1)" ~1.87x10



Poisson distribution

Poisson gives the probability of seeing n events
over some interval, when there is a probability p
of an individual event occurring in that period.



Poisson distribution for sequencing coverage
modeling

Assuming uniform distribution of reads:
Length of genomic segment: L

Number of reads: n Coverage A=nl/L
Length of each read: /

How much coverage is enough (or what is sufficient oversampling)?
Lander-Waterman model: P(X) = (A* * e*) [ x!
P(x=0) = e

where A is coverage



Poisson distribution

c Po=e™ % not sequence % seguenced (1- Po)
1 0.37 37% 63%

2 0.135 13.5% 87.5%
3 0.05 5% 95%

4q 0.018 1.8% 98.2%
5 0.0067 0.6% 99.4%

6 0.0025 0.25% 9G.75%
7 0.0009 0.09% 99.91%
8 0.0003 0.03% 9% .97

9 0.0001 0.01% 96.59%
10 0.000045 0.005% 96.595%




Dirichlet distribution

Outcomes: 6=(01, 02,..., 6k)

K

Density: D(0|a) = Z~ (o) | [ 657 6( Ze —1)

=1

K
i1 H ['(c)
/He 5292—1)619 (5 )

(a1, az,..., oK) are constants - different o
gives different probability distribution over 6.

K=2 - Beta distribution



Example: dice factories

Dice factories produce all kinds of dices: 6(1),
0(2),..., 6(6)

A dice factory distinguish itself from the others
by parameters o=(o1,012,03 , 04, A5, OL6)

The probability of producing a dice 6 in the
factory a is determined by ¢/0|a)



Probabilistic model

Selecting a model

A model can be anything from a simple distribution to

a complex stochastic grammar with many implicit
probability distributions

Probabilistic distributions (Gaussian, binominal, etc)

Probabilistic graphical models
Markov models

Hidden Markov models (HMM)
Bayesian models

Stochastic grammars
Data = model (learning)

The parameters of the model have to be inferred from
the data

MLE (maximum likelihood estimation) & MAP
(maximum a posteriori probability)

Model - data (inference/sampling)



MLE

Estimating the model parameters (learning):
from large sets of frusted examples

Given a set of data D (training set), find a model

with parameters 06 with the maximal likelihood
P(D|6)

QAMLE — arg mHaXP(D‘@)



Example: a loaded dice

Loaded dice: to estimate parameters 0., 0,
based on N observations D=d,,d,,...dy

.....

0.=n./ N, where n; is the occurrence of / outcome
(observed frequencies), is the maximum
likelihood solution (BSA 11.5)

P(n|0yre) > P(nlf) for any 0 # 0y1E

Learning from counts



When to use MLE

A drawback of MLE is that it can give poor
estimations when the data are scarce

E.g, if you flip coin twice, you may only get heads,
then P(tail) = 0

It may be wiser to apply prior knowledge (e.g, we
assume P(tail) is close to 0.5)

Use MAP instead



MAP

Bayesian statistics
P(D|6)P(0)

P(D)
__PD|o)P(0)

X P(DIO)P(9)

P(6) - prior probability
P(6|D) - posterior probability
P(D/6) -likelihood

MAP

PO|D) =

Oriap = arg max P(0|D)

_ P(D|0)P(0)
= argmax P(D)
arg max P(D|0)P(0)



Example: two die

Prior probabillities: fair dice 0.99; loaded dice: 0.01;
_oaded dice: P(6)=0.5, P(1)=...P(5)=0.1

Data: 3 consecutive ‘6’ es:

P(loaded|3’ 6" s)=P(loaded)*[P(3’ 6’ s|loaded)/P(3" 6" s)] =
0.01*(0.53/C)

P(fair|3’ 6 s)=P(fair)*[P(3" 6’ s|fair)/P(3" 6" s)] = 0.99 *
((1/6)3 / C)

Model comparison by using likelihood ratio:

P(loaded|3’ 6’ s) / P(fair|3' 6" s) < 1

So fair dice is more likely to generate the observation.




Learning from counts: including prior
Use prior knowledge when the data is scarce

Use Dirichlet distribution as prior for the

multinomial distribution:
Posterior P(0|n) = P(T;’DH(L])D(H) = P(n\]i)(l;)(ﬁ\a)

Posterior mean estimator (PME)
prME — /@;D(e\n +a)dd =Z Y (n+a) / 0; | [ o5 " do
k

QPME nZ‘I—OCZ
7

- N+ A

Equivalent to add o, as pseudo-counts to the observation n;
(BSA 11.5) (Add-one smoothing; Laplace estimator)

We can forget about statistics and use pseudo-counts
in the parameter estimation!



Sampling

Probabilistic model with parameter 6 - P(x|
0) for event X;

Sampling: generate a large set of events xi
with probability P(xi| 6);

Random number generator ( function rand()
picks a number randomly from the interval
[0,1) with the uniform density;

Sampling from a probabilistic model -
transforming P(x] 0) to a uniform distribution

For a finite set X (xieX), find i/ s.t. P(x1)+...+P(Xi-1)
<rand(0,1) < P(x1)+...+P(xi-1) + P(xi)



Entropy

Probabilities distributions P(x;) over K events

H(x)=-2 P(x;) log P(x;)
Maximized for uniform distribution P(x;)=1/K
A measure of average uncertainty

A sample application of entropy in
bioinformatics: as a measurement for
conservation



Mutual information

Measure of independence of two random
variable Xand Y

P(X]Y)=P(X), Xand Y are independent -
P(X,Y)/P(X)P(Y)=1
MOGY)=2xy P(x,y)log[P(x,y)/P(x)P(y)]

0 = independent

A sample application of mutual information:
Correlation between two residues
Application in RNA structure prediction



BRCA1 and BRCAZ2

A little background

BRCA1 and BRCAZ2 are human genes that produce tumor
suppressor proteins.

Specific inherited mutations in BRCA1 and BRCAZ increase the risk of
female breast and ovarian cancers, and they have been associated with
increased risks of several additional types of cancer.

Together, BRCA1 and BRCA2 mutations account for about 20 to 25
percent of hereditary breast cancers and about 5 to 10 percent of all breast
cancers.

A simple calculation

A rare mutation in an important gene is observed in only 2% of the
population. A person that carries this mutation in his/her genome
has 90% chance of developing a disease. On the other hand, a
person that has a normal gene (without mutation) only has a 5%
chance of developing this disease.

Question: If you tested having this disease, what's your chance of
carrying this rare mutation?



