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1 Introduction

This note addresses the problem of learning DNF expressions using membership queries. We extend

the results of Kushilevitz and Mansour [5], on learning through Fourier representations, to show

learnability of various subsets of DNF. In particular we show the polynomial learnability of Disjoint

DNF expressions under the uniform distribution, and exact learnability of Disjoint logn DNF. These

extend the learnability results of the corresponding classes of decision trees given in [5]. We further

show the learnability of log n term DNF under the uniform distribution. The learnability of this class

(even for the distribution free case) is already known [2], but the algorithm and analysis given here

are di�erent. The learning framework and algorithm are the same as in [5]. The main contribution of

this note is a di�erent analysis of the Fourier spectrum of these function classes. This enables us to

show the learnability of wider classes and with somewhat simpli�ed proofs.

The learning results are in the framework of PAC learnability, and exact learnability, with membership

queries (no random examples are used). Namely, the learning algorithm uses membership queries and

with high probability outputs a \good" hypothesis. In the PAC model, a good hypothesis has a small

probability of error when used to predict the value of the target function. In the exact learnability

model the hypothesis is not allowed to make an error on any input.

Disjoint DNF expressions are DNF expressions in which every truth assignment satis�es at most one

term. The learnability of this class has been studied before [1, 4], and it strictly includes the class

of decision trees. An example in [4] shows that disjoint DNF strictly includes the class of DNF

intersection CNF (which includes decision trees), so that our results are not implied by the recent

learnability result for the latter [3].

Fourier Transform and Learnability

Every function over the boolean cube f0; 1g

n

can be viewed as a vector with 2

n

entries. Each entry

is the value of the function on the input that corresponds to that entry. This description allows us to

consider function classes as subspaces of the vector space with 2

n

entries (and arbitrary real values).

The dimension of this vector space is clearly 2

n

.
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The base of characters (known as the Fourier base) have been shown useful for learnability. Each

function in this base is an xor operation on some subset of the input bits, and the function takes

values in f�1; 1g. Formally, let Z � f1; : : : ; ng, then

�

Z

(y

1

; : : : ; y

n

) = �

i2Z

(�1)

y

i

When using the inner product < g; f >= 2

�n

P

x2f0;1g

n

g(x)f(x), the Fourier base is orthonormal.

That is 8Z; S � f1; : : : ; ng, Z 6= S implies < �

Z

; �

S

>= 0 and 8Z; < �

Z

; �

Z

>= 1. This implies

the standard representation of functions in an orthonormal base, namely for any real function on

the boolean cube f(y) =

P

Z�f1;:::;ng

^

f(Z)�

Z

(y), where

^

f (Z) =< f; �

Z

>. In the proofs we would

implicitly use the following additive property: if h = f + g then

^

h(Z) =

^

f(Z) + ĝ(Z) (this is simply

implied by the linearity of the inner product).

In the rest of the paper we assume that the domain of the learned functions is f0; 1g

n

, and the learning

algorithm is allowed time polynomial in n and in the size of the representation for the target function.

The following notation will be used. Let D be a probability distribution on f0; 1g

n

, and let U be

the uniform distribution on that domain. Let E

D

(�) denote the expectation of the random variable

� with respect to the distribution D, and let Prob

D

[�] denote the probability that the 0-1 variable

� equals 1 with respect to D. A function f is t � sparse if its representation in the Fourier base

requires no more than t non-zero coe�cients. The next list (of 3 items) describes some of the results

of Kushilevitz and Mansour [5] that we use to derive our result.

1. The �rst result is Prob

D

[f 6= sign(g)] � E

D

[(f � g)

2

]. This implies that it is enough to get a

good \squared error" approximation to a function f with respect to D in order to have a good

prediction algorithm for it (with respect to the same distribution).

2. If f can be approximated with squared error with respect to U by a function g that is t�sparse,

then it can be approximated by taking the big coe�cients of f and setting other coe�cients to

zero. Formally, it can be approximated by h such that

^

f (S) � �=t )

^

h(S) = 0 and

^

f(S) >

�=t)

^

h(S) =

^

f(S).

3. There is an algorithm that uses membership queries and �nds all the \big" coe�cients of a

function f for the Fourier base. More formally, with high probability the algorithm �nds all

coe�cients such that j

^

f(S)j > � and no coe�cient such that j

^

f(S)j < �=2. The algorithm

runs in time polynomial in n; 1=� and log 1=�, where � and � are its inputs denoting the size of

coe�cients it looks for and the failure probability it is allowed.

De�nition 1 A function class F is learnable with membership queries with respect to distribution

D, if there exists an algorithm A such that 8f 2 F , when given access to a membership oracle for f

and on input �; �, the algorithm A runs in polynomial time and with probability at least 1� � outputs

a function h such that Prob

D

[f(x) 6= h(x)] < �.

De�nition 2 A function class F is exactly learnable with membership queries, if there exists an

algorithm A such that 8f 2 F , when given access to a membership oracle for f and on input �, the

algorithm A runs in polynomial time and with probability at least 1� � outputs a function h such that

8x; f(x) = h(x).

The following theorem is implied by the 3 items on the list above. A result similar to Lemma 1 is

implicit in the proof of item 2.
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Theorem 1 ([5]) If 8f 2 F 9g such that E

U

[(g � f)

2

] < � and g is t � sparse, then F is learnable

using membership queries, with respect to the uniform distribution, in time (and queries) complexity

polynomial in n; t; 1=� and log 1=�.

Lemma 1 Any class of t�sparse functions is exactly learnable with membership queries in time (and

queries) complexity polynomial in n; t and log 1=�.

Proof: Let f be a t � sparse function, and let T = fS j

^

f(S) 6= 0g, it is clear that jT j � t. Fix

� = 1=4, we use the algorithm to �nd all coe�cients bigger than �=t, and then we approximate each

coe�cient to within �=t to create h. Our hypothesis will be sign(h). By the performance guarantee of

the algorithm (with high probability) it would not �nd any coe�cient not in T , and therefore we get

that 8x;

jf(x)� h(x)j = j

X

S2T

(

^

f(S)�

^

h(S))�

S

(x)j �

X

S2T

j

^

f(S)�

^

h(S)j � j�

S

(x)j � t � (�=t) = � < 1=2

This implies 8x; f(x) = sign(h(x)).

2 The Learning Results

In analyzing the learnability of DNF we would use a characterization of the coe�cients of conjunctions,

described in the next lemma.

Lemma 2 Let t = l

1

l

2

: : : l

k

be a conjunction (of k literals). Then t has exactly 2

k

coe�cients not

equal to zero in the Fourier base; furthermore

^

t(Z) 6= 0 implies j

^

t(Z)j = 2

�k

.

Proof: Let t be the conjunction, and let Z be a subset of f1; : : : ; ng. The coe�cient that corresponds

to Z is:

^

t(Z) =< t; �

Z

>= 2

�n

P

x2f0;1g

n

t(x)�

Z

(x). The conjunction t(x) 6= 0 only when all its literals

are satis�ed, so we are interested in the values of � only in that region. Let ind(t) denote the indices

of the variables that appear in t. We have two cases with respect to Z. If Z � ind(t), then �

Z

(x)

has a �xed value when t(x) = 1 (either -1 or 1), and

^

t(Z) is 2

�n+n�k

= 2

�k

or �2

�k

depending

on that value. If Z 6� ind(t), let i 2 Z n ind(t), then 8x 2 f0; 1g

n

we have that t(x) = t(x

i

) and

�

Z

(x) = ��

Z

(x

i

), where x

i

means x with the i`th bit ipped. This implies

^

t(Z) = 0.

Theorem 2 The class of Disjoint DNF expressions is learnable with membership queries with respect

to the uniform distribution.

Proof: Let f be a disjoint DNF expression with m terms. We use the result that terms longer than

log(2m=�) can be thrown away if we use the uniform distribution, incurring prediction error of at most

�=2 [6]. Let g = t

1

_ t

2

_ : : : _ t

q

be the function we get when we do that. The function g is still

boolean and therefore Prob

D

[f(x) 6= g(x)] = E

D

[(f � g)

2

], and it has a small squared error. On the

other hand g has at most m terms each with at most log(2m=�) literals, and as it is disjoint, it can be

written as g = t

1

+ t

2

+ : : :+ t

q

(replacing the OR operator with the PLUS operator). That means that

a coe�cient ĝ(Z) of g is ĝ(Z) =

P

q

j=1

^

t

j

(Z), and from Lemma 2 we get that the number of non-zero

coe�cients of g is bounded by m � (2m=�). Theorem 1 implies the polynomial learnability.

Theorem 3 The class of Disjoint log n DNF expressions is exactly learnable with membership queries.
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Proof: Let f be a disjoint DNF expression, with m terms, where each term is not longer than logn.

The disjointness property combined with Lemma 2 imply that f is mn�sparse, and Lemma 1 implies

the learnability.

We note again that the class of disjoint DNF functions strictly includes the class of decision trees,

and the class Disjoint logn DNF includes the class of depth log n decision trees, so the above results

generalize the results from [5]. We further note that the learnability result in [5] is shown using a

bound on a measure, called L

1

, of decision trees (which is de�ned as L

1

(f) =

P

Z

j

^

f(Z)j), whereas the

proof we give here escapes the use of L

1

.

Theorem 4 The class of logn term DNF expressions is learnable with membership queries with respect

to the uniform distribution.

Proof: Let f be an m term DNF function. We use the identity f _ g = f + g� fg (where _ denotes

OR, + denotes PLUS, and � denotes MINUS) to get the following (inclusion-exclusion) identity:

f = t

1

_ t

2

_ : : :_ t

m

= (t

1

+ t

2

� t

1

t

2

) _ t

3

_ : : :_ t

m

= (t

1

+ t

2

+ t

3

� t

1

t

2

� t

1

t

3

� t

2

t

3

+ t

1

t

2

t

3

) _ t

4

: : : _ t

m

=

X

i

1

t

i

1

�

X

i

1

;i

2

t

i

1

t

i

2

+ : : :+

X

i

1

;:::;i

m

(�1)

m+1

t

i

1

: : : t

i

m

The last expression for f is a sum of 2

m

conjunctions. If m = logn then the sum includes only n

conjunctions. Now use the same arguments as in Theorem 2 to get the learnability under the uniform

distribution.

Blum and Rudich [2] have shown exact learnability of logn term DNF, so the last result is not new with

respect to showing learnability of classes

1

. Nevertheless, the result gives a di�erent characterization

for this class and might be useful in understanding the power and structure of DNF expressions.
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