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Abstra
t. Re
ent work has introdu
ed Boolean kernels with whi
h one


an learn over a feature spa
e 
ontaining all 
onjun
tions of length up

to k (for any 1 � k � n) over the original n Boolean features in the

input spa
e. This motivates the question of whether maximum margin

algorithms su
h as support ve
tor ma
hines 
an learn Disjun
tive Normal

Form expressions in the PAC learning model using this kernel. We study

this question, as well as a variant in whi
h stru
tural risk minimization

(SRM) is performed where the 
lass hierar
hy is taken over the length

of 
onjun
tions.

We show that su
h maximum margin algorithms do not PAC learn t(n)-

term DNF for any t(n) = !(1); even when used with su
h a SRM s
heme.

We also 
onsider PAC learning under the uniform distribution and show

that if the kernel uses 
onjun
tions of length ~!(

p

n) then the maximum

margin hypothesis will fail on the uniform distribution as well. Our re-

sults 
on
retely illustrate that margin based algorithms may over�t when

learning simple target fun
tions with natural kernels.

1 Introdu
tion

1.1 Ba
kground

Maximum margin algorithms, notably Support Ve
tor Ma
hines (SVM) [3℄, have

re
eived 
onsiderable attention in re
ent years (see e.g. [21℄ for an introdu
tion).

In their basi
 form, SVM learn linear threshold hypotheses and 
ombine two

powerful ideas. The �rst idea is to learn using the linear separator whi
h a
hieves

the maximum margin on the training data rather than an arbitrary 
onsistent

hypothesis. The se
ond idea is to use an impli
it feature expansion by a kernel

fun
tion. The kernel K : X�X ! R, where X is the original spa
e of examples,


omputes the inner produ
t in the expanded feature spa
e. Given a kernel K
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whi
h 
orresponds to some expanded feature spa
e, the SVM hypothesis h is

(an impli
it representation of) the maximum margin linear threshold hypothesis

over this expanded feature spa
e rather than the original feature spa
e. SVM

theory implies that if the kernel K is eÆ
iently 
omputable then it is possible

to eÆ
iently 
onstru
t this maximum margin hypothesis h and that h itself is

eÆ
iently 
omputable. Several on-line algorithms have also been proposed whi
h

iteratively 
onstru
t large margin hypotheses in the feature spa
e, see e.g. [6℄.

Another major fo
us of resear
h in learning theory is the question of whether

various 
lasses of Boolean fun
tions 
an be learned by 
omputationally eÆ
ient

algorithms. The 
anoni
al open question in this area is whether there exist eÆ-


ient algorithms in Valiant's PAC learning model [23℄ for learning Boolean formu-

las in Disjun
tive Normal Form, or DNF. This question has been open sin
e the

introdu
tion of the PAC model nearly twenty years ago, and has been intensively

studied by many resear
hers (see e.g. [1, 2, 4, 7, 8, 10, 12, 14, 15, 18, 22, 24, 25℄).

1.2 Can SVMs learn DNF?

In this paper we analyze the performan
e of maximum margin algorithms when

used with Boolean kernels to learn DNF formulas. Several authors [11, 17, 26, 13℄

have re
ently proposed a family of kernel fun
tions K

k

: f0; 1g

n

� f0; 1g

n

! N,

where 1 � k � n, su
h that K

k

(x; y) 
omputes the number of (monotone or

unrestri
ted) 
onjun
tions of length (exa
tly or up to) k whi
h are true in both

x and y. This is equivalent to expanding the original feature spa
e of n Boolean

features to in
lude all su
h 
onjun
tions.

1

Sin
e linear threshold elements 
an

represent disjun
tions, one 
an naturally view any DNF formula as a linear

threshold fun
tion over this expanded feature spa
e. It is thus natural to ask

whether theK

k

kernel maximummargin learning algorithms are good algorithms

for learning DNF.

Additional motivation for studying DNF learnability with the K

k

kernels


omes from re
ent progress on the DNF learning problem. The fastest known

algorithm for PAC learning DNF is due to Klivans and Servedio [12℄; it works by

expli
itly expanding ea
h example into a feature spa
e of monotone 
onjun
tions

and expli
itly learning a 
onsistent linear threshold fun
tion over this expanded

feature spa
e. Sin
e the K

k

kernel enables us to do su
h expansions impli
itly

in a 
omputationally eÆ
ient way, it is natural to investigate whether the K

k

-

kernel maximum margin algorithm yields a 
omputationally eÆ
ient algorithm

for PAC learning DNF.

We note that it is easily seen that standard 
onvergen
e bounds on large

margin 
lassi�ers do not imply that the K

k

kernel maximum margin algorithm

is an eÆ
ient algorithm for PAC learning DNF. Indeed, the bound given by,

1

This Boolean kernel is similar to the well known polynomial kernel in that all mono-

mials of length up to k are represented. The main di�eren
e is that the polynomial

kernel assigns weights to monomials whi
h depend on 
ertain binomial 
oeÆ
ients;

thus the weights of di�erent monomials 
an di�er by an exponential fa
tor. In the

Boolean kernel all monomials have the same weight.



e.g., Theorem 4.18 of [21℄ only implies nontrivial generalization error for the K

k

kernel algorithm if a sample of size n


(k)

is used, and with su
h a large sample

the 
omputational advantage of using the K

k

kernel is lost. However, su
h upper

bounds do not imply that the K

k

kernel maximum margin algorithm must have

poor generalization error if run with a smaller sample. The situation is analogous

to that of [19℄ where the generalization error of the Per
eptron and Winnow

algorithms were studied. For both Per
eptron and Winnow the standard bounds

gave only an exponential upper bound on the number of examples required

to learn various 
lasses, but a detailed algorithm-spe
i�
 analysis gave positive

PAC learning results for Per
eptron and negative PAC results for Winnow for the

problems 
onsidered. Analogously, in this paper we perform detailed algorithm-

spe
i�
 analyses for the K

k

kernel maximum margin algorithms.

1.3 Previous work

Khardon et al. 
onstru
ted a simple Boolean fun
tion and an example sequen
e

and showed that this sequen
e 
auses the K

n

kernel per
eptron algorithm (i.e.

the Per
eptron algorithm run over a feature spa
e of all 2

n

monotone 
onjun
-

tions) to make exponentially many mistakes [11℄. The 
urrent paper di�ers in

several ways from this earlier work: we study the maximum margin algorithm

rather than Per
eptron, we 
onsider PAC learning from a random sample rather

than online learning, and we analyze the K

k

kernels for all 1 � k � n:

1.4 Our results

Throughout this paper we study the kernels 
orresponding to all monotone

monomials of length up to k, whi
h we denote by K

k

: In addition to maxi-

mum margin algorithms we also 
onsider a natural s
heme of stru
tural risk

minimization (SRM) that 
an be used with this family of Boolean kernels. In

SRM, given a hierar
hy of 
lasses C

1

� C

2

� : : :, one learns with ea
h 
lass

separately and uses a 
ost fun
tion 
ombining the 
omplexity of the 
lass with

its observed a

ura
y to 
hoose the �nal hypothesis. The 
ost fun
tion typi
ally

balan
es various 
riteria su
h as the observed error and the (bound on) gener-

alization error. A natural s
heme here is to use SRM over the 
lasses formed by

K

k

with k = 1; : : : ; n.

2

We prove several negative results whi
h establish strong limitations on the

ability of maximum margin algorithms to PAC learn DNF formulas (or other

simple Boolean 
lasses) using the monomial kernels. Our �rst result says essen-

tially that for any t(n) = !(1); for all k = 1; : : : ; n the K

k

kernel maximum

margin algorithm 
annot PAC learn t(n)-term DNF. More pre
isely, we prove

Result 1: Let t(n) = !(1) and let � =

1

4�2

t(n)

: There is a O(t(n))-term monotone

DNF over t(n) relevant variables, and a distribution D over f0; 1g

n

su
h that

2

This is standard pra
ti
e in experimental work with the polynomial kernel, where

typi
ally small values of k are tried (e.g. 1 to 5) and the best is 
hosen.



for all k 2 f1; : : : ; ng the K

k

maximum margin hypothesis has error larger than

� (with overwhelmingly high probability over the 
hoi
e of a polynomial size

random sample from D).

Note that this result implies that the K

k

maximum margin algorithms fail

even when 
ombined with SRM regardless of the 
ost fun
tion. This is simply

be
ause the maximum margin hypothesis has error > � for all k; and hen
e the

�nal SRM hypothesis must also have error > �:

While our a

ura
y bound in the above result is small (it is o(1) sin
e t(n) =

!(1)), a simple variant of the 
onstru
tion used for Result 1 also proves:

Result 2: Let f(x) = x

1

be the target fun
tion. There is a distribution D over

f0; 1g

n

su
h that for any k = !(1) the K

k

maximum margin hypothesis has

error at least

1

2

� 2

�n


(1)

(with overwhelmingly high probability over the 
hoi
e

of a polynomial size random sample from D).

Thus any attempt to learn using monomials of non-
onstant size 
an provably

lead to over�tting. Note that for any k = �(1); standard bounds on maximum

margin algorithms show that the K

k

kernel algorithm 
an learn f(x) = x

1

from

a polynomial size sample.

Given these strong negative results for PAC learning under arbitrary distri-

butions, we next 
onsider the problem of PAC learning monotone DNF under

the uniform distribution. This is one of the few frameworks in whi
h some pos-

itive results have been obtained for learning DNF from random examples only

(see e.g. [5, 20℄). In this s
enario a simple variant of the 
onstru
tion for Result 1

shows that learning must fail if k is too small:

Result 3: Let t(n) = !(1) and � =

1

4�2

t(n)

: There is a O(t(n))-term monotone

DNF over t(n) relevant variables su
h that for all k < t(n) the K

k

maximum

margin hypothesis has error at least � (with probability 1 over the 
hoi
e of a

random sample from the uniform distribution).

On the other hand, we also show that the K

k

algorithm fails under the uniform

distribution for large k:

Result 4: Let f(x) = x

1

be the target fun
tion. For any k = ~!(

p

n), the K

k

maximum margin hypothesis will have error

1

2

�2

�
(n)

with probability at least

0:028 over the 
hoi
e of a polynomial size random sample from the uniform

distribution.

Note that there is a substantial gap between the \low" values of k (for whi
h

learning is guaranteed to fail) and the \high" values of k (for whi
h we show that

learning fails with 
onstant probability). We feel that it is of signi�
ant interest

to 
hara
terize the performan
e of the K

k

maximum margin algorithm under

the uniform distribution for these intermediate values of k; a dis
ussion of this

point is given in Se
tion 5.

Finally, we note here that some of our results 
an be adapted to give similar

negative results for the standard polynomial kernel.



2 Preliminaries

We 
onsider learning Boolean fun
tions over the Boolean 
ube f0; 1g

n

so that

f : f0; 1g

n

! f0; 1g. It is 
onvenient to 
onsider instead the range f�1; 1g with 0

mapped to �1 and 1 mapped to 1. This is easily a
hieved by the transformation

f

0

(x) = 1�2f(x) and sin
e we deal with linear fun
tion representations this 
an

be done without a�e
ting the results. For the rest of the paper we assume this

representation.

Our arguments will refer to L

1

and L

2

norms of ve
tors. We use the notation

jxj =

P

jx

l

j and kxk =

p

P

x

2

l

.

De�nition 1. Let h : R

N

! f�1; 1g be a linear threshold fun
tion h(x) =

sign(W �x��) for some W 2 R

N

; � 2 R: The margin of h on hz; bi 2 R

N

�f�1; 1g

is

m

h

(z; b) =

b(W � z � �)

kWk

:

Note that jm

h

(z; b)j is the Eu
lidean distan
e from z to the hyperplaneW �x = �:

De�nition 2. Let S = fhx

i

; b

i

ig

i=1;:::;m

be a set of labeled examples where ea
h

x

i

2 R

N

and ea
h b

i

2 f�1; 1g: Let h(x) = sign(W � x� �) be a linear threshold

fun
tion. The margin of h on S is

m

h

(S) = min

hx;bi2S

m

h

(x; b):

The maximum margin 
lassi�er for S is the linear threshold fun
tion h(x) =

sign(W � x� �) su
h that

m

h

(S) = max

W

0

2R

N

;�

0

2R

min

hx;bi2S

b(W

0

� x� �

0

)

kW

0

k

: (1)

The quantity (1) is 
alled the margin of S and is denoted m

S

:

Note that m

S

> 0 i� S is 
onsistent with some linear threshold fun
tion. If

m

S

> 0 then the maximum margin 
lassi�er for S is unique [21℄.

Let � be a transformation whi
h maps f0; 1g

n

to R

N

and let K : f0; 1g

n

�

f0; 1g

n

! R be the 
orresponding kernel fun
tion K(x; y) = �(x) � �(y): Given

a set of labeled examples S = fhx

i

; b

i

ig

i=1;:::;m

where ea
h x

i

belongs to f0; 1g

n

we write �(S) to denote the set of transformed examples fh�(x

i

); b

i

ig

i=1;:::;m

:

We refer to the following learning algorithm as the K-maximum margin

learner:

{ The algorithm �rst draws a sample S = fhx

i

; f(x

i

)ig

i=1;:::;m

of m = poly(n)

labeled examples from some �xed probability distribution D over f0; 1g

n

;

here f : f0; 1g

n

! f�1; 1g is the unknown fun
tion to be learned.

{ The algorithm's hypothesis is h : f0; 1g

n

! f�1; 1g; h(x) = sign(W ��(x)��)

where sign(W � x � �) is the maximum margin 
lassi�er for �(S): Without

loss of generality we assume that W is normalized, that is kWk = 1. We also

assume that S 
ontains both positive and negative examples sin
e otherwise

the maximum margin 
lassi�er is not de�ned.



SVM theory tells us that if K(x; y) 
an be 
omputed in poly(n) time then the

K-maximum margin learning algorithm runs in poly(n;m) time and the output

hypothesis h(x) 
an be evaluated in poly(n;m) time [21℄.

Our goal is to analyze the PAC learning ability of various kernel maximum

margin learning algorithms. Re
all (see e.g. [9℄) that a PAC learning algorithm

for a 
lass C of fun
tions over f0; 1g

n

is an algorithm whi
h runs in time polyno-

mial in n and

1

Æ

,

1

�

where Æ is a 
on�den
e parameter and � is an a

ura
y param-

eter. We assume here, as is the 
ase throughout the paper, that ea
h fun
tion

in C has a des
ription of size poly(n): Given a

ess to random labelled examples

hx; f(x)i for any f 2 C and any distribution D over f0; 1g

n

; with probability

at least 1� Æ a PAC learning algorithm must output an eÆ
iently 
omputable

hypothesis h su
h that Pr

x2D

[h(x) 6= f(x)℄ � �. If an algorithm only satis�es

this 
riterion for a parti
ular distribution su
h as the uniform distribution on

f0; 1g

n

; we say that it is a uniform distribution PAC learning algorithm.

Let �

k

(n) =

P

i=k

i=1

�

n

i

�

. Note that the number of nonempty monotone 
onjun
-

tions (i.e. monomials) of size at most k on n variables is �

k

(n). For x 2 f0; 1g

n

we

write �

k

(x) to denote the �

k

(n)-dimensional ve
tor (x

T

)

T�f1;:::;ng;1�jT j�k

where

x

T

=

Q

i2T

x

i

, i.e. the 
omponents of �

k

(x) are all monotone 
onjun
tions of

the desired size. We note that for an example x 2 f0; 1g

n

, the L

1

norm of the

expanded example �

k

(x) is j�

k

(x)j = �

k

(jxj).

For x; y 2 f0; 1g

n

we write x � y to denote

P

n

i=1

x

i

y

i

; i.e. the number of bits

whi
h are 1 in both x and y.

De�nition 3. We write K

k

(x; y) to denote �

k

(x) ��

k

(y). We refer to K

k

as the

k-monomials kernel.

The following theorem shows that the k-monomial kernels are easy to 
ompute:

Theorem 1 ([11℄). For all 1 � k � n we have K

k

(x; y) =

P

k

i=1

�

x�y

i

�

.

We will frequently use the following observation whi
h is a dire
t 
onsequen
e

of the Cau
hy-S
hwarz inequality:

Observation 1 If U 2 R

N

1

with kUk = L and I � f1; : : : ; N

1

g, jI j = N

2

; then

P

i2I

jU

i

j � L �

p

N

2

.

As a 
onsequen
e of Observation 1 we have that if �

k

(n) = N

1

is the number

of features in the expanded feature spa
e and j�

k

(x)j = �

k

(jxj) = N

2

; then

U � �

k

(x) � L �

p

N

2

.

3 Distribution-Free Non-Learnability

We give a DNF and a distribution whi
h are su
h that the k-monomials kernel

fails to learn, for all 1 � k � n: The DNF we 
onsider is a read on
e monotone

DNF over t(n) variables where t(n) = !(1) and t(n) = O(log n). In fa
t our



results hold for any t(n) = !(1) but for 
on
reteness we use t(n) = logn as a

running example. We have

f(x) = (x

1

� � �x

4`

2
) _ (x

4`

2

+1

� � �x

8`

2
) _ � � � _ (x

4`

3

�4`

2

+1

� � �x

4`

3
) (2)

where 4`

3

= t(n) = logn so that the number of terms ` = �(t(n)

1=3

) =

�((logn)

1=3

): For the rest of this se
tion f(x) will refer to the fun
tion de�ned

in Equation (2) and ` to its size parameter.

A polynomial threshold fun
tion is de�ned by a multivariate polynomial

p(x

1

; : : : ; x

n

) with real 
oeÆ
ients. The output of the polynomial threshold fun
-

tion is 1 if p(x

1

; : : : ; x

n

) � 0 and �1 otherwise. The degree of the fun
tion is

simply the degree of the polynomial p. Note that any hypothesis output by the

K

k

kernel maximum margin algorithm must be a polynomial threshold fun
tion

of degree at most k: Minsky and Papert [16℄ (see also [12℄) gave the following

lower bound on polynomial threshold fun
tion degree for DNF:

Theorem 2. Any polynomial threshold fun
tion for f(x) in Equation (2) must

have degree at least `:

The distribution D on f0; 1g

n

we 
onsider is the following:

{ With probability

1

2

the distribution outputs 0

n

.

{ With probability

1

2

the distribution outputs a string x 2 f0; 1g

n

drawn from

the following produ
t distribution D

0

: the �rst t(n) bits are drawn uniformly,

and the last n � t(n) bits are drawn from the produ
t distribution whi
h

assigns 1 to ea
h bit with probability

1

n

1=3

:

For small values of k the result is representation based and does not depend

on the sample drawn:

Lemma 1. If the maximum margin algorithm uses the kernel K

k

for k < ` when

learning f(x) under D then its hypothesis has error greater than � =

1

4�2

t(n)

=

1

4n

.

Proof. If hypothesis h has error at most � =

1

4�2

t(n)

under D then 
learly it

must have error at most

1

2�2

t(n)

under D

0

. Sin
e we are using the kernel K

k

; the

hypothesis h is some polynomial threshold fun
tion of degree at most k whi
h

has error � �

1

2�2

t(n)

under D

0

. So there must be some setting of the last n� t(n)

variables whi
h 
auses h to have error at most � under the uniform distribution

on the �rst t(n) bits. Under this setting of variables the hypothesis is a degree-k

polynomial threshold fun
tion on the �rst t(n) variables. By Minsky and Papert's

theorem, this polynomial threshold fun
tion 
annot 
ompute the target fun
tion

exa
tly, so it must be wrong on at least one setting of the �rst t(n) variables. But

under the uniform distribution, every setting of those variables has probability

at least

1

2

t(n)

: This 
ontradi
ts � �

1

2�2

t(n)

. ut

For larger values of k (in fa
t for all k = !(1)) we show that the maximum

margin hypothesis will with high probability over�t the sample. The following

de�nition 
aptures typi
al properties of a sample from distribution D:



De�nition 4. A sample S is a D-typi
al sample if

{ The sample in
ludes the example 0

n

.

{ Any nonzero example x in the sample has 0:99n

2=3

� jxj � 1:01n

2=3

.

{ Every pair of positive and negative examples x

i

; x

j

in S satis�es x

i

� x

j

�

1:01n

1=3

:

We are interested in 
ases where a polynomial size sample is used by the algo-

rithm. The following two lemmas hold by standard Cherno� bound arguments:

Lemma 2. For m = poly(n); with probability 1�2

�n


(1)

a random i.i.d. sample

of m draws from D is a D-typi
al sample.

De�nition 5. Let S be a sample. The set Z(S) in
ludes all positive examples z

su
h that every example x in S satis�es x � z � 1:01n

1=3

:

Lemma 3. Let S be a D-typi
al sample of size m = poly(n) examples. Then

Pr

D

[z 2 Z(S)jf(z) = 1℄ = 1� 2

�n


(1)

.

We now show that for aD-typi
al sample one 
an a
hieve a very large margin:

Lemma 4. Let S be a D-typi
al sample. Then the maximum margin m

S

satis�es

m

S

�M

h

0

�

1

2

�

�

k

(:99n

2=3

)�m�

k

(1:01n

1=3

)

p

m�

k

(1:01n

2=3

)

Proof. We exhibit an expli
it linear threshold fun
tion h

0

whi
h has margin at

least M

h

0

on the data set. Let h

0

(x) = sign(W

0

� �(x)� �

0

) be de�ned as follows:

{ W

0

T

= 1 if T is a
tive in some positive example;

{ W

0

T

= 0 if T is not a
tive in any positive example.

{ �

0

is the value that gives the maximum margin on �

k

(S) for this W

0

; i.e. �

0

is the average of the smallest value of W

0

� �

k

(x

i;+

) and the largest value of

W

0

� �

k

(x

j;�

):

Sin
e ea
h positive example x

+

in S has at least :99n

2=3

ones, we have W

0

�

�(x

+

) � �

k

(:99n

2=3

). Sin
e ea
h positive example has at most 1:01n

2=3

ones,

ea
h positive example in the sample 
ontributes at most �

k

(1:01n

2=3

) ones to

W

0

; so kW

0

k �

p

m�

k

(1:01n

2=3

): Finally, sin
e ea
h negative example x

�

in the

sample and ea
h positive example x

+

in the sample share at most 1:01n

1=3

ones,

for any x

�

in the sample W

0

� �(x

�

) � m�

k

(1:01n

1=3

): Putting these 
onditions

together, we get that the margin of h

0

on the sample is at least

1

2

�

�

k

(:99n

2=3

)�m�

k

(1:01n

1=3

)

p

m�

k

(1:01n

2=3

)

as desired. ut

Lemma 5. If S is a D-typi
al sample, then the threshold � in the maximum

margin 
lassi�er for S is at least M

h

0

:



Proof. Let h(x) = sign(W ��(x)� �) be the maximum margin hypothesis. Sin
e

kWk = 1 we have

� =

�

kWk

= m

h

(�

k

(0

n

);�1) � m

h

0

(S) �M

h

0

where the se
ond equality holds be
ause W � �(0

n

) = 0 and the last inequality

is by Lemma 4. ut

Lemma 6. If the maximum margin algorithm uses the kernel K

k

for k = !(1)

when learning f(x) under D then with probability 1� 2

�n


(1)

its hypothesis has

error greater than � =

1

4�2

t(n)

=

1

4n

.

Proof. Let S be the sample used for learning and let h(x) = sign(W � �

k

(x)� �)

be the maximum margin hypothesis. It is well known (see e.g. Proposition 6.5

of [21℄) that the maximum margin weight ve
tor W is a linear 
ombination of

the support ve
tors, i.e. of 
ertain examples �

k

(x) in the sample �

k

(S): Hen
e

the only 
oordinates W

T

of W that 
an be nonzero are those 
orresponding to

features (
onjun
tions) T su
h that x

T

= 1 for some example x in S:

By Lemma 2 we have that with probability 1 � 2

�n


(1)

the sample S is D-

typi
al. Consider any z 2 Z(S). It follows from the above observations on W

thatW ��

k

(z) is a sum of at mostm�

k

(1:01n

1=3

) nonzero numbers, and moreover

the sum of the squares of these numbers is at most 1. Thus by Observation 1 we

have that W � �

k

(z) �

p

m�

k

(1:01n

1=3

): The positive example z is erroneously


lassi�ed as negative by h if � > W � �

k

(z); by Lemma 5 this inequality holds if

1

2

�

�

k

(:99n

2=3

)�m�

k

(1:01n

1=3

)

p

m�

k

(1:01n

2=3

)

>

q

m�

k

(1:01n

1=3

);

i.e. if

�

k

(:99n

2=3

) > 2m

q

�

k

(1:01n

1=3

)�

k

(1:01n

2=3

) +m�

k

(1:01n

1=3

): (3)

One 
an show that this equation holds for any k = !(1); the proof is omitted

for la
k of spa
e and will be given in the full version of the paper.

Finally, observe that positive examples have probability at least

1

2

t(n)

=

1

n

.

The above argument shows that any z 2 Z(S) is mis
lassi�ed, and Lemma 3

guarantees that the relative weight of Z(S) in positive examples is 1� 2

�n


(1)

:

Thus the overall error rate of h under D is at least

1

4�2

t(n)

=

1

4n

as 
laimed. ut

Together, Lemma 1 and Lemma 6 imply Result 1:

Theorem 3. For any value of k, if the maximum margin algorithm uses the

kernel K

k

when learning f(x) under D then with probability 1 � 2

�n


(1)

its

hypothesis has error greater than � =

1

4�2

t(n)

=

1

4n

.

With a small modi�
ation we 
an also obtain Result 2. In parti
ular, sin
e

we do not need to deal with small k we 
an use a simple fun
tion f = x

1

and

modify D slightly so that the probability that f(x) = 1 is 0.5. Now the argument

of Lemma 6 yields



Theorem 4. For k = !(1), if the maximum margin algorithm uses the ker-

nel K

k

when learning f(x) = x

1

under D then with probability 1 � 2

�n


(1)

its

hypothesis has error at least � =

1

2

� 2

�n


(1)

.

4 Uniform Distribution

While Theorem 3 tells us that the K

k

-maximum margin learner is not a PAC

learning algorithm for monotone DNF in the distribution-free PAC model, it

does not rule out the possibility that the K

k

-maximum margin learner might

su

eed for parti
ular probability distributions su
h as the uniform distribution

on f0; 1g

n

: In this se
tion we investigate the uniform distribution.

In Se
tion 3 we took advantage of the fa
t that 0

n

o

urred with high weight

under the distribution D. This let us give a lower bound (of 0) on the value of

W � �

k

(x) for some negative example in the sample, and we then 
ould argue

that the value of � in the maximum margin 
lassi�er must be at least as large

as m

S

. For the uniform distribution, though, this lower bound no longer holds,

so we must use a more subtle analysis.

Before turning to the main result, it is easy to observe that the proof of

Lemma 1 goes through for the uniform distribution as well (we a
tually gain a

fa
tor of 2). This therefore proves Result 3: if the algorithm uses too low a degree

k then its hypothesis 
annot possibly be a suÆ
iently a

urate approximation of

the target. In 
ontrast, the next result will show that if a rather large k is used

then the algorithm is likely to over�t.

For the next result, we 
onsider the target fun
tion f(x) = x

1

. Let S = S

+

[

S

�

be a data set drawn from the uniform distribution U and labelled a

ording

to the fun
tion f(x) where S

+

= fhx

i;+

; 1ig

i=1;:::;m

+

are the positive examples

and S

�

= fhx

j;�

;�1ig

j=1;:::;m

�

are the negative examples. Let u

i

denote jx

i;+

j

the weight of the i-th positive example, and let the positive examples be ordered

so that u

1

� u

2

� � � � � u

m

+
: Similarly let v

j

denote jx

j;�

j the weight of the

j-th negative example with v

1

� v

2

� � � � � v

m

�
:

De�nition 6. A sample S is a U-typi
al sample if

{ Every example x 2 S satis�es 0:49n � jxj � 0:51n.

{ Every pair of positive and negative examples x

i;+

; x

j;�

in S satisfy x

i;+

�

x

j;�

� 0:26n:

A straightforward appli
ation of Cherno� bounds yields the next two lemmas:

Lemma 7. For m = poly(n); with probability 1�2

�
(n)

a random i.i.d. sample

of m draws from U is a U-typi
al sample.

De�nition 7. Let S be a sample. The set Z(S) in
ludes all positive examples z

su
h that every example x in S satis�es x � z � 0:26n:

Lemma 8. Let S be a U-typi
al sample of size m = poly(n) examples. Then

Pr

U

[z 2 Z(S)jf(z) = 1℄ = 1� 2

�
(n)

.



The following lemma is analogous to Lemma 4:

Lemma 9. Let S be a U-typi
al sample of size m: Then the maximum margin

m

S

satis�es

m

S

�

1

2

�

1

p

m

p

�

k

(u

1

)�

p

m�

k

(:26n)

�

:

Proof. We exhibit an expli
it linear threshold fun
tion h

0

whi
h has this margin.

Let h

0

(x) = sign(W

0

� �

k

(x)� �

0

) be de�ned as follows:

{ For ea
h positive example x

i;+

in S; pi
k a set of �

k

(u

1

) features (monomials)

whi
h take value 1 on x

i;+

: This 
an be done sin
e ea
h positive example

x

i;+

has at least u

1

bits whi
h are 1. For ea
h feature T in ea
h of these sets,

assign W

0

T

= 1:

{ For all remaining features T set W

0

T

= 0:

{ Set �

0

to be the value that gives the maximum margin on �

k

(S) for this W

0

;

i.e. �

0

is the average of the smallest value of W

0

� �

k

(x

i;+

) and the largest

value of W

0

� �

k

(x

j;�

):

Note that sin
e ea
h positive example 
ontributes at most �

k

(u

1

) nonzero 
oef-

�
ients to W

0

, the number of 1's in W

0

is at most m�

k

(u

1

), and hen
e kW

0

k �

p

m�

k

(u

1

). By 
onstru
tion we also have that ea
h positive example x

i;+

satis-

�es W

0

� �

k

(x

i;+

) � �

k

(u

1

).

Sin
e S is a U-typi
al sample, ea
h negative example x

j;�

in S shares at most

:26n ones with any positive example in S: Hen
e the value of W

0

� �

k

(x

j;�

) is a

sum of at most m�

k

(:26n) numbers whose squares sum to at most m�

k

(u

1

). By

Observation 1 we have that W

0

� �

k

(x

j;�

) �

p

m�

k

(:26n)

p

m�

k

(u

1

).

The lemma follows by 
ombining the above bounds on kW

0

k; W

0

� �

k

(x

i;+

)

and W

0

� �

k

(x

j;�

): ut

It turns out that the relative sizes of u

1

and v

1

(the weights of the lightest

positive and negative examples in S) play an important role.

De�nition 8. A sample S of size m is positive-skewed if u

1

� v

1

+B; i.e. the

lightest positive example in S weighs at least B more than the lightest negative

example, where B =

1

66

q

n

logm

:

The following lemma shows that a random sample is positive skewed with


onstant probability (the proof is omitted for la
k of spa
e and is given in the

full version of the paper):

Lemma 10. Let S be a sample of size m = poly(n) drawn from the uniform

distribution. Then S is positive-skewed with probability at least 0:029:

Now we 
an give a lower bound on the threshold � for the maximum margin


lassi�er.



Lemma 11. Let S be a labeled sample of size m whi
h is U-typi
al and positive

skewed, and let h(x) = sign(W � �

k

(x) � �) be the maximum margin hypothesis

for S: Then

� �

1

2

�

1

p

m

p

�

k

(u

1

)�

p

m�

k

(:26n)

�

�

p

�

k

(u

1

�B):

Proof. Sin
e S is positive-skewed we know that W � �

k

(x

1;�

) is a sum of at

most �

k

(u

1

�B) weights W

T

; and sin
e W is normalized the sum of the squares

of these weights is at most 1. By Observation 1 we thus have W � �

k

(x

1;�

) �

�

p

�

k

(u

1

�B): Sin
e � �W ��

k

(x

1;�

)+m

S

; together with Lemma 9 this proves

the lemma. ut

Putting all of the pie
es together, we have:

Theorem 5. If the maximum margin algorithm uses the kernel K

k

for k =

!(

p

n log

3

2

n) when learning f(x) = x

1

under the uniform distribution then with

probability at least 0:028 its hypothesis has error � =

1

2

� 2

�
(n)

.

Proof. By Lemmas 7 and 10, the sample S used for learning is both U-typi
al

and positive skewed with probability at least 0:029�1=2

�
(n)

> 0:028: Consider

any z 2 Z(S). Using the reasoning from Lemma 6, W � �(z) is a sum of at most

m�

k

(:26n) numbers whose squares sum to at most 1, soW ��(z) �

p

m�

k

(:26n).

The example z is erroneously 
lassi�ed as negative by h if

1

2

�

1

p

m

p

�

k

(u

1

)�

p

m�

k

(:26n)

�

�

p

�

k

(u

1

�B) >

p

m�

k

(:26n):

so it suÆ
es to show that

p

�

k

(u

1

) > 3m

�

p

�

k

(:26n) +

p

�

k

(u

1

�B)

�

: (4)

In Appendix A we show that this holds for all k = !(

p

n log

3

2

n

) as required.

The above argument shows that any z 2 Z(S) is mis
lassi�ed, and Lemma 8

guarantees that the relative weight of Z(S) in positive examples is 1� 2

�
(n)

:

Sin
e Pr

x2U

[f(x) = 1℄ is 1=2; we have that with probability at least 0:028 the

hypothesis h has error rate at least � =

1

2

� 2

�
(n)

, and we are done. ut

5 Con
lusions and Future Work

Boolean kernels o�er an interesting new algorithmi
 approa
h to one of the ma-

jor open problems in 
omputational learning theory, namely learnability of DNF

expressions. We have studied the performan
e of a maximum margin algorithm

with the Boolean kernels, giving negative results for several settings of the prob-

lem. Our results indi
ate that the maximum margin algorithm 
an over�t even

when learning simple target fun
tions and using natural and expressive kernels

for su
h fun
tions, and even when 
ombined with stru
tural risk minimization.



We hope that these negative results will be used as a tool to explore alternate

approa
hes whi
h may su

eed; we now dis
uss these brie
y.

One dire
tion for future work is to modify the basi
 learning algorithm.

Many interesting variants of the basi
 maximum margin algorithm have been

used in re
ent years, su
h as soft margin 
riteria, kernel regularization, et
.. It

may be possible to prove positive results for some DNF learning problems using

these approa
hes. A starting point would be to test their performan
e on the


ounterexamples (fun
tions and distributions) whi
h we have 
onstru
ted.

A more immediate goal is to 
lose the gap between small and large k in our

results for the uniform distribution. It is well known [24℄ that when learning

polynomial size DNF under uniform, 
onjun
tions of length !(logn) 
an be

ignored with little e�e
t. Hen
e the most interesting setting of k for the uniform

distribution learning problem is k = �(log n). Learning under uniform with a

k = �(log n) kernel is qualitatively quite di�erent from learning with the large

values of k whi
h we were able to analyze. For example, for k = �(log n) if a

suÆ
iently large polynomial size sample is taken, then with very high probability

all features (monomials of size at most k) are a
tive in the sample.

As a �rst 
on
rete problem in this s
enario, one might 
onsider the question

of whether a k = �(log n) kernel maximum margin algorithm 
an eÆ
iently PAC

learn the target fun
tion f(x) = x

1

under uniform. For this problem it is easy

to show that that the naive hypothesis h

0


onstru
ted in our proofs a
hieves

both a large margin and high a

ura
y. Moreover, it is possible to show that

with high probability the maximum margin hypothesis has a margin whi
h is

within a multipli
ative fa
tor of (1+o(1)) of the margin a
hieved by h

0

. Though

these preliminary results do not answer the above question they suggest that

the answer may be positive. A positive answer, in our view, would be strong

motivation to analyze the general 
ase.
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A Proof of Equation (4)

We must show that

p

�

k

(u

1

) > 3m

�

p

�

k

(:26n) +

p

�

k

(u

1

�B)

�

: Sin
e we are

assuming that the sample S is U-typi
al, we have u

1

� :49n so u

1

�B > 0:26n:

It thus suÆ
es to show that �

k

(u

1

) > 36m

2

�

k

(u

1

�B):

Case 1: k �

1

2

(u

1

� B): Sin
e �

k

(`) =

P

k

i=1

�

`

i

�

, for k � `=2 we have �

k

(`) �

k

�

`

k

�

. Also for all k, �

k

(`) �

�

`

k

�

so it suÆ
es to show that

�

u

1

k

�

> 36m

2

k

�

u

1

�B

k

�

:

This inequality is true if

�

u

1

u

1

�B

�

k

> 36m

2

k:

Re
all that B =

1

66

q

n

logm

: Now using the fa
t that

u

1

u

1

�B

= 1 +

B

u

1

�B

> 1 +

B

n

= 1 +

1

66

p

n logm

it suÆ
es to show that

�

1 +

1

66

p

n logm

�

k

> 36m

2

k:

Using the fa
t that 1 + x � e

x=2

for 0 < x < 1; we 
an see that this inequality

holds if k > 132

p

n log(m) ln(36m

2

n): Sin
e m = poly(n), this is the 
ase for

k = !(

p

n log

3

2

n).

Case 2:

1

2

(u

1

�B) < k: Sin
e �

k

(u

1

�B) � 2

u

1

�B

; it suÆ
es to show that

u

1

2

�

B

2

X

i=1

�

u

1

i

�

> 36m

2

� 2

u

1

�B

:

Sin
e

p

u

1

> B=2 it suÆ
es to show that

u

1

2

�

p

u

1

X

i=1

�

u

1

i

�

> 36m

2

� 2

u

1

�B

:

Standard binomial 
oeÆ
ient properties imply that the left side above is �(2

u

1

).

Sin
e m = poly(n) and B =

1

66

q

n

logm

this is greater than the right side.


