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Abstract

Hybrid (mixed discrete and continuous) state and action
Markov Decision Processes (HSA-MDPs) provide an ex-
pressive formalism for modeling stochastic and concurrent
sequential decision-making problems. Existing solvers for
HSA-MDPs are either limited to very restricted transition
distributions, require knowledge of domain-specific basis
functions to achieve good approximations, or do not scale.
We explore a domain-independent approach based on the
framework of hindsight optimization (HOP) for HSA-MDPs,
which uses an upper bound on the finite-horizon action val-
ues for action selection. Our main contribution is a linear
time reduction to a Mixed Integer Linear Program (MILP)
that encodes the HOP objective, when the dynamics are spec-
ified as location-scale probability distributions parametrized
by Piecewise Linear (PWL) functions of states and actions.
In addition, we show how to use the same machinery to se-
lect actions based on a lower-bound generated by straight line
plans. Our empirical results show that the HSA-HOP ap-
proach effectively scales to high-dimensional problems and
outperforms baselines that are capable of scaling to such large
hybrid MDPs.

Introduction and Related Work

Many real-world decision-theoretic planning problems are
naturally modeled using concurrent, hybrid (discrete and
continuous) state and action (HSA) MDPs. Examples in-
clude reservoir control under rainfall uncertainty (Reyes et
al. 2015) and the unit commitment problem of power gener-
ation subject to demand uncertainty (Nikovski and Zhang
2010). Existing approaches to solving expressive HSA-
MDPs largely fall into two categories: dynamic program-
ming for special restricted classes of HSA-MDPs, and ap-
proximate optimization of restricted value function or pol-
icy representations. Unfortunately, each category has criti-
cal limitations discussed next.

For the case of exact or bounded approximate solutions,
numerous (symbolic) dynamic programming approaches
have been proposed for restricted classes of HSA-MDPs
ranging from the univariate continuous state setting for time-
dependent MDPs (Boyan and Littman 2001) to piecewise
value representations (Feng et al. 2004; Li and Littman
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2005; Sanner, Delgado, and de Barros 2011; Zamani et al.
2012) and phase-type transition approximations (Marecki,
Koenig, and Tambe 2007). Later work introduced real-
time dynamic programming extensions yielding more com-
pact value functions (Meuleau et al. 2009; Vianna, De Bar-
ros, and Sanner 2015). Sample average approximations
(SAA) (Kleywegt, Shapiro, and Homem-de Mello 2002) of
dynamic programming can be used for value approxima-
tion in an initial state (Mercier and Van Hentenryck 2008).
Unfortunately, all these dynamic programming approaches
for HSA-MDPs are either too restrictive or computationally
intractable for the state-action dependent stochastic, 100-
dimensional hybrid state, 50-dimensional hybrid action, and
moderate horizon domains we experiment with in this paper.

A different line of research directly optimizes a restricted
class of value functions or policies. For value approxi-
mation, such methods are exemplified by Hybrid Approx-
imate Linear Programming (HALP) (Kveton, Hauskrecht,
and Guestrin 2006), which sought to approximate expres-
sive HSA-MDP value functions via a weighted basis func-
tion representation. On the policy approximation side, ap-
proaches like Pegasus (Ng and Jordan 2000) sought to op-
timize restricted parameterized policy classes subject to tra-
jectories sampled in an SAA setting. All of these methods
assume a priori knowledge of a good value or policy repre-
sentation, which is typically difficult to have in advance.

In this work, we explore a qualitatively different approach
to solving a wide class of HSA-MDPs that does not require
domain-specific assumptions on the value function or pol-
icy representation. Our approach is based on developing the
framework of hindsight optimization (HOP) (Chang, Givan,
and Chong 2000; Chong, Givan, and Chang 2000) for HSA-
MDPs. HOP provides an upper bound on the finite-horizon
action values in the current state, which can be used for ac-
tion selection. But the challenge is to compute this bound
efficiently.

In particular our contributions are as follows: (i) We de-
velop a generic linear space and time compilation of an ex-
pressive fragment of the RDDL (Sanner 2010) HSA-MDP
representation to a mixed integer linear program (MILP).
This compilation is augmented with action constraints to
yield different algorithmic variations. (ii) Our main contri-
bution is the hindsight optimization variant. This generalizes
previous work on HOP (Issakkimuthu et al. 2015) to handle



both continuous random variables and state-action depen-
dent stochasticity. (iii) We develop a second variant based
on straight line plans which is complementary in that it pro-
vides a lower bound on action values. (iv) Empirical results
show that HSA-HOP scales to HSA-MDPs with moderate
horizons and high-dimensional state and action spaces and
generally outperforms baselines that are capable of scaling
to such large hybrid MDPs.

Hybrid State and Action MDPs

A discrete-time MDP is a tuple (S, A, T, R) where S is a
state set, A is an action set, 7' : S x A x S — [0, 1] de-
notes the stochastic transition function for time ¢ + 1 such
that T'(s?, at, s'T1) = P(st*!]st,al),and R : S x A — R
denotes the state-action reward function. In this paper we
focus on finite horizon planning for a specified horizon h
with the objective of maximizing the expected total reward
accumulated over h steps.

Factored state and action MDPs (Boutilier, Dean, and
Hanks 1999; Raghavan et al. 2012) extend the basic set-
ting by specifying the state and action spaces as products
of discrete variables. Hybrid State and Action MDP (HSA-
MDP) (Kveton, Hauskrecht, and Guestrin 2006; Sanner,
Delgado, and de Barros 2011) keep the factored structure
but provide a significant extension by allowing for both con-
tinuous and discrete state and action variables. The state
space S and action space A are represented by finite sets
of state variables X = {X3,...,X;} and action variables
A ={A,..., A}, where both X and A can contain both
continuous and discrete random variables.

The transition function of the MDP is factored over the
state variables, ie. P(s'|s, a) is represented as a product of
conditional probability distributions P;(¢;) = P(X/|g;) for
i1 =1,...,1. Each P;(g;) is a function of a (typically small)
subset ¢; C {X, A, X’} where X’ are the next state vari-
ables and the set of dependencies is acyclic. At any time ¢

and state variable X; € X, XD Pl-(q,gt)).
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RDDL Representation of Reward and Dynamics

Following recent work on HSA-MDPs (Sanner, Delgado,
and de Barros 2011; Zamani et al. 2012; Vianna, De Barros,
and Sanner 2015), we use the description language RDDL
(Sanner 2010) to specify HSA-MDPs. RDDL allows for re-
lational templates to specify random variables which are in-
stantiated via a set of objects. As a preprocessing step, we
ground the templates with a concrete set of objects and ex-
pand relational quantifiers over their finite domains to obtain
a propositional HSA-MDP as defined above. We note that
the RDDL simply provides a convenient interface and our
approach is not restricted to this language.

The RDDL source code specifies the factored transition
and reward functions through a sequence of assignment and
sampling statements that define intermediate variables and
next state variables, using algebraic expressions in these def-
initions. The crucial point for a well-defined RDDL model
is that the dependence among variables arising from the se-
quence of statements is acyclic.

HSA-MDPs with Piecewise Linear (PWL) dynamics have
received significant attention due to their simplicity and ex-
pressivity (Feng et al. 2004; Li and Littman 2005; Meuleau
et al. 2009; Zamani et al. 2012). Whereas exact Dynamic
Programming (DP) approaches for HSA-MDPs with PWL
rewards and piecewise constant transition probabilities have
been explored (Feng et al. 2004; Zamani et al. 2012), these
cannot handle probability distributions whose parameters
are continuous functions of state and action variables. In
this case the optimal value function need not be PWL as re-
quired by previous work, making exact DP impossible. In
contrast, our definition allows for a general form of stochas-
ticity which we define next as the stochasticPWL class.

Definition 1. An expression for state variable X (or reward
variable R) is a stochasticPWL expression if it is built re-
cursively using the following 3 cases:

(a) A deterministic PWL expression containing (1) scalars,
current state, current action, defined intermediate vari-
ables and next state variables, (2) boolean operations
A,V,—, >, (3) linear combination with constant coeffi-
cients, and (4) multiplication with a boolean predicate.
The syntactic structure of each of these cases is shown in
Table 1.

(b) If X a discrete random variable with support {1,...,n},

its probability mass function is parametrized as
(E1,...,E,) where each of Fi,...,E, is a stochas-
ticPWL expression.

(c) If X is a continuous random variable in the location-scale
family of distributions (Mukhopadhyay 2000), it is pa-
rameterized with a PWL transformation X = Fy + FyZ,
where F; (aka location) and F5 (aka scale) are stochas-
ticPWL expressions, and Z is a random variable for the
standardized form of the distribution with known Cumu-
lative Distribution Function (CDF).

The location-scale family includes many distributions of
practical use such as the uniform, gaussian, exponential,
logistic, beta, gamma distributions (Mukhopadhyay 2000).
For example, the following RDDL expressions are valid ac-
cording to Definition 1, where z! is a state variable, a® is
an action variable, and z? is an intermediate variable used in
calculating ¢ the reward.

2! =max(1, min(0, 0.22¢ + 0.7a")) (1
LT — Normal(xt, at), at >0 ()
i —if (2! < 2T) then z' Tl else 1 — 21 (3)

These illustrate the recursive structure of expressions, the
limitation to PWL, and state-action dependent parameters
of random variables. We emphasize that both state variables
and action variables can be either discrete or continuous.
While PWL is a practical restriction, PWL functions
(Keha, de Farias, and Nemhauser 2004) are an arbitrarily
good approximation for higher order transition functions
(Dunham 1986). As will be clear below, the restriction to
PWL is due to translating the RDDL code into mixed inte-
ger linear programs (MILP) and using MILP solvers. By
using more powerful solvers one can expand this approach.



Deterministic PWL Expression Condition MILP Constraints
E—k k 1s a constant vg = k
Ey, — true (E}, — false, respectively) vy = 1.0 (vge = 0.0, respectively)
E—p p is a state or action variable VE = Up

E — N E} = V,E]
E — V' |E} = 3,E}

FE} is a boolean expression

nvg <> oi vg; < (n—1)+vg
vp < 3, Vgi < NUE

E—>ﬁEb UEzl—UEb
vg =0orl. Eachin =0orl
E — kE; k is a constant vg = kvg,
E — FEyop Eo op =+ or — Vg = Ug, Op VE,
E — EyEq Same as £ — if E} then F else O
By, — E, > Ey E, is a boolean expression —M(1 —vg,) <vg, —vg, < Mug,

v, = 0or 1, M is large e.g. M = 105

FE — if E} then F; else Ey

E) is a boolean expression

VE, —M(].—'UEb) <vg < vg, +M(1—UEh)
vg, — Mvg, <vg <wvg, + Mvg,
vg, = 0or1, M is large e.g. M = 10°

Table 1: The syntax of Deterministic PWL statements and their MILP encoding. In each case F; and Fs belong to the same
language as I/ without cycles. The function represented by the expression E is equivalent to the free variable vg in MILP.

Hindsight Optimization (HOP) for HSA-MDPs

HOP (Chang, Givan, and Chong 2000; Chong, Givan, and
Chang 2000) is a computationally attractive heuristic for on-
line action selection. HOP approximates the optimal value
function by optimally solving different realizations of the
MDP called futures or determinizations and aggregating
their values. While it is easy to construct domains where
the HOP heuristic fails, previous work has shown that it per-
forms well in many benchmark probabilistic planning prob-
lems (Yoon et al. 2008). Recent work has shown how to
apply HOP in discrete factored MDPs through a translation
to Integer Linear programs (Issakkimuthu et al. 2015). In
this paper, we show how these ideas can be extended in two
respects in order to handle HSA-MDPs: First, we allow the
more general state-action dependent stochasticity of Defi-
nition 1 (previous work restricted stochasticity to a small
number of state-independent cases). Second, we allow for
continuous and discrete variables.

The notion of a random future is central to the idea of
HOP. Given a fixed policy, the MDP model induces a dis-
tribution over length-h trajectories. Viewing the choice of
policy, and the random choices of the MDP as separate pro-
cesses, we can make the random choices in advance (e.g.,
fixing the seed for the random number generator). This se-
lection which, conditioned on any policy, produces a random
trajectory for the policy is known as a random future.

HOP requires sampling random futures and once the ran-
dom choices are fixed, a future represents a determinis-
tic planning problem. The optimal value of any state in
the MDP is V;(s°) = max, E[S;_, R(s}, 7%)], which
is the maximum expected value over random futures f of
length /. In contrast, the hindsight value V,"(s°) =
E¢[max 0,..al Z?:o R(s%,a%)] is the expected value of
the optimal values of each future, where the inner maximiza-
tion optimizes a plan (instead of a policy) for each future.

Observe that the maximizing values of actions a} are

future-dependent, i.e., “in hindsight” assuming a particular

outcome of 3'}“. Due to swapping expectation and max-

imization and Jensen’s inequality the function V"°P is an
upper bound on V* (Mercier and Van Hentenryck 2007).
Action selection in HOP uses one-step lookahead using
V1P 5o that the outcome of the first action is not assumed.
For each action a, the next states s;...sp are sampled

and their V"P value is used. The HOP algorithm picks

arg max, QZ(’p(so, a) with

F
O 1 O
"oP (50, a) = R(s0,a) + - STVt . @
F=1

Reduction of Deterministic HSA-MDPs to MILP

In this section we show how to translate a deterministic
HSA-MDP, for example as generated by the determiniza-
tion process of the next section. After determinization each
P; and R will be Deterministic PWL as given by Definition
1(a). The optimal plan is the solution to the following Mixed
Integer Linear Program (MILP):

h
max Z R(X', AY) 5)

t=0
st. X! =Pi(¢i™"), i=1,...,Lt=1,....h (6
where X° = sy is a given initial state and X! =

(Xt,...,X})and At = (AL, ..., AL)) are the optimization
variables foreacht =0,...,h — 1.

The translation of deterministic P;() to a set of MILP con-
straints is done recursively using the syntax in Definition
1(a). We formalize the syntax in the form of a recursive
grammar in Table 1. The translation to MILP constraints is
given in the third column and is standard for most cases. The
encoding of if-then-else expressions requires the use of a
large constant (i.e., “big-M trick™) that can be chosen gener-
ically. Let the size of an expression be characterized by the
size of the abstract syntax tree that produces the expression.



Proposition 1. (Linear-time Reduction) Given a determin-
istic HSA-MDP specified in the language of Definition 1(a),
the MILP in Equations 5-6 is such that (1) the compilation is
produced in linear-time w.r.t. the number of constraints, the
size of each PWL expression, the number of state variables
and the planning horizon, and (2) an optimal solution of the
MILP is an optimal plan for the deterministic HSA-MDP.

Determinization of HSA-MDPs

Next we consider the determinization of HSA-MDPs by de-
terminizing stochasticPWL expressions. The key question
is how to sample a random future when the parameters of
the random variables are not completely known at compile
time, and are dependent on the states within a trajectory.
We propose to encode random futures in a MILP using in-
verse transform sampling. Intuitively, we first sample a u ~
Uniform(0, 1) and encode the quantile of order u as a set of
MILP constraints. More precisely for any u € [0, 1],

1. If X is a discrete variable, its cumulative distribution
function is (E1,E; + Ea,...,Y ., E;) and is PWL.
The u-quantile is encoded in the PWL constraints: (1)
S;=31_Ejforj=1,....,n,(Q)x=> 1 ix[(S; >
u) A (S;i—1 <u)],and 3) z € {1,2,...,n}.

2. If X is a continuous variable as in Definition 1, its quan-
tile function is Fiy ' (u; By, Eo) = By + ExF ' (u) and is
PWL. The u-quantile is encoded in the MILP constraint
x = Fy + Ey x F;'(u), where F; ' (u) is a constant.

Proposition 2. (Correctness for single variable sampling)
Let X; be a state variable whose transition function is given
by a stochasticPWL expression as in Definition 1. Then, the
MILP variable x produced by the above procedure encodes
a random future for X; given its parents ;.

Note that u and F,*(u) are constants that are known at
compile time. Yet the corresponding deterministic expres-
sions for X yield a sample from the state dependent distri-
bution which is not known at compile time. Consider for
example the variables in Equation 2 and a pre-determined
u = 0.23. The constraint z!*! = zf 4+ 0.23a’ produced by
the above procedure encodes the 0.23-quantile outcome for
every value of ¢ and a.

The overall determinization algorithm applies the above
procedure recursively on the syntactic structure of each
X f“, using the corresponding deterministic or probabilistic
MILP translation. By using Proposition 2 inductively over
the acyclic structure of the dependencies in the RDDL code:

Proposition 3. (Correctness of future generation) The
MILP constructed using the overall determinization proce-
dure is a random future from the distribution induced by the
RDDL source code.

HOP for HSA-MDPs

We next describe the overall MILP using multiple sampled
determinizations. For a given HSA-MDP we produce copies
of the state and action variables, annotated with superscripts
f,t, where f is the future index, t the time step, and the

optimization variables are X Zf " and A7f T We generate F’

futures using the determinization procedure above. The ob-
jective function of the MILP is the h-step accumulated re-
ward averaged over F' futures. This objective and the first
set of constraints is used by all of our algorithms:

F h
max% >N RXI AN (7)
f=1t=0
s.t. Xif"t = Determinization of Pi(qu’t_l) )
i=1,....f=1,...,F;t=1,...,h (9)
XM =g, f=1,...,F (10

The HSA-HOP algorithm uses one additional set of con-
straints restricting the action variables at time step ¢ = 0 to
be identical across futures:

AP =AY =1, omif=1,...,F (1)

Observe that the MILP in Equations 7-10 solves all futures
independently. When the constraint in Equation 11 is added,
the MILP implements a one-step lookahead where the solu-
tions are coupled by requiring the first action to be the same.

Proposition 4. (Equivalence to HOP) (Issakkimuthu et al.
2015) The MILP in Equations 7-11 identifies the same solu-
tions as the explicit HOP construction in Equation 4.

Proof. The proof is due to the first term of the objective
function being identical across futures for any fixed sg and

any feasible solution to A?’O, resulting in Equation 4. O

This construction identifies the HOP solutions in factored
spaces without state and action enumeration and without the
additional enumeration or continuous maximization implicit
when using Equation 4 for action selection.

Algorithmic Baselines and Variations

As a baseline we use the simple idea that determinizes the
problem using the most likely outcome determinization (for
discrete variables) and the expected outcome determiniza-
tion (for continuous variables). We use this baseline in
our experiments denoting it as Mean. This idea is not
new but the challenge is to encode it without enumeration
of state-action dependent parameters of random variables.
This can be done using Definition 1 with the MILP encod-
ing: (1) If X is a discrete stochasticPWL variable, its most
likely determinization max(E1, ..., E,) is PWL and equiv-
alent to a MILP constraint (Table 1). (2) If X is a con-
tinuous state variable, its expected outcome determinization
E(X) = Ey + EyE(Z) is PWL because E(Z) is known.

We also consider two alternative formulations to HSA-
HOP. The first is based on the idea of a straight line plan
also known as an open loop policy or conformant plan. In
this case we commit to a sequence of future actions regard-
less of the probabilistic outcomes of earlier actions. We can
achieve this in the MILP formulation by replacing the con-
straint in Equation 11 with

API=AY =1, oms f=1,. . Fit=0,... h—1 (12)

The straight line value converges to the optimal value of the
best open loop policy as the number of futures increases.



Since in this case we are limiting the set of policies, the value
of the optimal straight line plan is a lower bound on the op-
timal value of any state. The gap between the optimal HOP
and straight line value can be used in various ways, e.g., to
guide the generation of futures, to detect convergence, and to
calculate approximation guarantees. Although this formula-
tion commits to an entire plan, in our evaluation at each step
we only use the first action from that plan, exactly like the
other algorithms, and then replan for the next step.

The second variant is Consensus: determinizations are
sampled exactly as in HSA-HOP, but solved independently
of other determinizations. An action is selected by major-

ity vote (ties broken randomly) among the A% across the
futures. This trades off the monolithic MILP of HSA-HOP
with several independent MILPs (one for each future) and
aggregates their solutions heuristically.

Experimental Evaluation

As previously mentioned, we use the description language
RDDL (Sanner 2010) to specify the domain dynamics. In
all experiments we use the Gurobi optimizer (Gurobi Op-
timization 2015) for optimizing the MILPs. We compare
our algorithms HOP and Straight Line to the baselines of
Mean and Consensus. When applicable we show the per-
formance of Noop, Random and hand-coded policies.

The different algorithms are evaluated in an online replan-
ning mode, i.e., planning is repeated at every world state and
one action is output. The average accumulated reward over
a horizon of 20 steps is measured (averaged over 30 trials)
and a 95% confidence interval is shown. Each evaluation
has three experimental parameters : (1) Time limit ¢ per de-
cision in minutes, (2) Lookahead h, the length of sampled
futures and, (3) Number of sampled futures F' per decision.
We evaluated the algorithms by setting a reasonable value
for ¢ keeping in mind the runtime, then increasing h and F
for best performance, until the MILP solver throws a mem-
ory error caused by an excessively large MILP. We use the
best feasible solution found for any MILP after ¢ minutes.

Domains

Power Generation (Nikovski and Zhang 2010; Angelidakis
and Chalkiadakis 2015) : This domain concerns the unit
commitment problem for a set of independent power plants
represented as a Factored MDP. Each plant ¢ has a cur-
rent reserve of stock; (stock; > 0) and observes fluc-
tuations in temperature; with a uniform distribution as
temperatureiJrl ~ Uniform(u; — d; s + 9;). The
fluctuations in temperature create a demand; for heating as
well as cooling demandﬁ'|r1 = ui|temperature§+ —
wi|.- In this simple example, we assume p; and ¢; are
constant, so this domain has state-independent continu-
ous stochasticity. The demand is always positive with a
V-shape, centered with value zero when temperature; =
;. The objective is to optimize order;, the real-valued
units of power to be generated at plant ¢ within a pre-
specified budget ", order; < B (B constant), produced
at a cost of $0.5 per unit and consumed at $1 per unit
reward™’ = ¥, [min(demand™!, stock!) — 0.50rder!].

Unconsumed power is carried over as stock/t!

if (stock! < demand™) then (order!) else
(stock! — demand!™" + order!). This domain consists of
a hybrid state space and continuous action space.

The mean temperature is x; and the demand for the mean
temperature is zero. Thus, the Noop policy is optimal with

respect to the Mean determinization. The maximum de-
mand is p;0; per time step and expected demand is % L

Reservoirs problem (Reyes et al. 2015) : This problem
consists of hybrid states with state-dependent noise in the
transitions. The problem consists of a set of reservoirs con-
nected by a set of 2-ended bidirectional pipes. Although any
topology can be encoded, we demonstrate a linear topol-
ogy of reservoirs and say that each reservoir ¢ is down-
stream of reservoir 7 — 1 and connected by pipe ¢. An MDP
state is a list of positive current water levels rlevel; and
rain; for each reservoir .. An MDP action is a list of real-
valued flows flow;, one for each pipe 7 connecting reser-
voirs ¢ — 1 and 4. The sign of £1ow; determines direction of
flow (positive for downstream). The rain level is stochas-
tic as a zero truncated Gaussian distribution rain!™' =
max[0,Normal(rain!, o)), and the flow is deterministic
as rlevelf’l = rlevelﬁ + rain’; — flowﬁ + (flowﬁ,l >
0)flowi_; + (flowi,; <O0)flowl,,.

Each reservoir has a preset minimum c«; and max-
imum [3; water level. The objective is to mini-
mize overflow and underflow of the reservoirs outside
the prespecified limits, encoded by the reward function
reward™ = -5, |max(0,a; —rlevell, rlevell —
Bi)l = >, [(flow! < 0)£low!|.

The second term penalizes upstream flow (checked via the
sign of flow;) by the magnitude of the flow. PWL con-
straints are included in the RDDL to enforce (1) total outflow
does not exceed current water level and (2) non-negativity
of rain and water levels in each reservoir. In addition, each
reservoir has a maximum capacity.

Icetrack : We illustrate a stochastic version of the clas-
sical Racetrack problem (Barto, Bradtke, and Singh 1995).
In contrast to the previous domains which have an opti-
mization flavor, Icetrack is goal based and requires a large
lookahead. Icetrack consists of real valued states of the
form (z,y,vs,v,) where (z,y) is the real-valued position
of a car on ice, and (v,,v,) are its velocities in the  and
y directions respectively. The control inputs are the ac-
celerations (a,,ay) in the two directions. The actions are
susceptible to failure with a fixed probability 6 with v, =

if Bernoulli(l1—6) then v,+a, else v,. The
transition for v, is analogous. So this domain demonstrates
state-independent discrete noise. We specify a goal state
and measure the negative of the number of steps to reach
it. Any collision makes the car unable to move for the rest
of the episode. Icetrack shows two limitations of our PWL
modeling restriction viz. we cannot use polar form (v, 0)
as the state updates would require non-PWL functions, and
in our discrete time model, collisions between (z*, y') and
(1, y!*1) are given a bilinear function. So we restrict

(ui—xi)dl’%—f”’%i (zi—pi)da]

! E[demand;] = Pl i s

T=pi—0;



the track to be rectilinear (axis-parallel walls) to allow PWL
collision detection (details omitted due to space constraints).

Instances

In the Power Generation domain, we varied the number of
plants between 10 and 50. All the plants start with O stock,
the demand constants are set ¢; = 10 and each §; is a fixed
integer sampled uniformly between §; = 3 and §; = 8. In
the Reservoirs problem, we varied the number of reservoirs
between 10 and 50 but only show the three largest instances
due to space constraints. We set «; = 1000, 3; = 8000 and
capacity to 40000 for all reservoirs. All reservoirs are empty
in the initial world state and o = 1024. In the Icetrack prob-
lem, we tested with a 2 cell wide track along the edges of a
10 x 10 grid, initial position set to (5, 1) and goal (5,9). The
acceleration is restricted a,,a, € [—4,4], and the slippage
6 is varied from 0% to 20%.

Results

The results are shown in Figure 1 for Power Generation,
Table 2 for Reservoirs and Figure 2 for Icetrack. Overall,
we see that HSA-HOP (denoted as HOP) performs the best
across our three evaluation domains and Straight Line per-
forms equally well in two of them.

Sampled vs. static determinization: In Power Genera-
tion, Mean is equivalent to Noop? and achieves a total re-
ward of zero, whereas HOP and Straight Line achieve much
higher rewards. In the Reservoirs problem (Table 2), we see
that the performance of Mean degrades as the number of
reservoirs increases in comparison with HOP and Straight
Line. Further, Mean has a higher variance and wider confi-
dence interval across episodes whereas HOP appears more
stable. Finally in Icetrack, mean determinization assumes
that the actions always succeed. This assumption is true in
the leftmost instance (Figure 2) which has zero noise, but we
see that the performance of Mean is suboptimal, whereas us-
ing multiple futures (as in HOP) performs better. We found
that this suboptimality is caused by numerical instabilities
in the output of Gurobi across runs. As the noise increases,
the performance of Mean is never better than HOP, because
HOP accounts for the failure of actions.

Action Selection: The algorithms HOP, Straight Line and
Consensus differ only in their action selection via the con-
straints they impose on action variables. Our HOP algo-
rithm performs the best in this regard, and performance of
Straight Line and Consensus vary. The Straight Line algo-
rithm performs well in Power Generation and Reservoirs,
and the small gap from the performance of HOP suggests
the existence of high quality open-loop policies. In Ice-
track, the strong action constraints of Straight Line, and
the large lookahead of the domain, make the MILP signifi-
cantly harder and leads to poor performance. The poor per-
formance of Consensus is not surprising when continuous
stochasticity is presented. We found that the average con-
sensus among root actions went from 20% in Power Gen-
eration, to 55% in Reservoirs, to 95% in the discrete noise
case of Icetrack. Overall, HOP strikes a balance between

’E[temperature;] = p, demand; = pi(pi — pi) = 0.

12000

MEXPECTED-DEMAND EMAX-DEMAND

10000 MEAN [0 CONSENSUS & M
o 8000 B STRAIGHT LINE %
H 6000 B
2
® 4000 e
2 |
2000 é
0 E

10 20 30 40 50
NUMBER OF POWER PLANTS

Figure 1: Results in the Power Generation problem with
lookahead h = 4,t = 0.5 (mins) and F' = 5 per decision.

Reward ( x10°) # Reservoirs

Algorithms 30 40 50
HOP -2.4 (0.22) -1.51 (0.02) | -2.27 (0.01)
Mean —2.42(0.22) | —1.57(0.15) | —2.32(0.21)
Straight Line —2.51(0.22) | —1.56(0.01) | —2.29(0.01)
Consensus —2.78(0.21) | —1.78(0.05) | —2.61(0.04)
NoOp —2.76(0.25) | —3.71(0.14) | —4.38(0.13)
Random —2.76(0.25) | —6.41(0.17) | —7.94(0.19)

Table 2: Average Accumulated Reward (x10°) and 95%
Confidence Intervals with increasing reservoirs (columns),
setting h = 4, t = 2 (mins) and F' = 5 per decision.

optimality and hardness of the MILP, and gives the best per-
formance over other action selection methods.

Conclusion

We introduced a new approach for online action selection in
HSA-MDPs, which is characterized by having both discrete
and continuous state and action variables and state-action
dependent stochasticity. Our main algorithm HSA-HOP
significantly improves on the scalability of previous ap-
proaches by leveraging state-of-the-art MILP solvers, scal-
ing to MDPs with 100 continuous state dimensions and 50
continuous action dimensions. The key to the scalability is
our linear space and time compilation from the RDDL lan-
guage to a MILP whose solution returns a hybrid action that
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Figure 2: Results in Icetrack with settings h = 20, t =

1(mins) and F' = 5.



maximizes an upper bound on action values. Our approach
strictly generalizes previous work on ILP reduction of HOP
for discrete Factored MDPs (Issakkimuthu et al. 2015) and
resolves the critical problem of how to determinize transition
distributions whose parameters are state-action dependent.
The alternative algorithm using straight line plans provides
a complementary heuristic based on a lower bound approx-
imation. This is found to be competitive in some cases but
overall less robust than HSA-HOP.
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