
Sequential Consistency

Distributed Systems Spring 2020

Lecture 13

Today's lecture:
1. Consistency models
2. Sequential consistency
3. Implement sequential consistency



Replication

• Increase performance
• Increase system availability
• Better fault tolerance
• Scalability

Distributed data store

Process Process Process

Local copy



Consistency Models

A contract between a (distributed) data store and processes, in
which the data store specifies precisely what the results of read and
write operations are in the presence of concurrency.

• For many applications, we want that different clients making
read/write requests to different replicas with the same logical
data item should not obtain different results.

• Different consistency models dictate under what conditions
different results can be obtained.

• Influence how concurrent reads and writes behave.
• Relevant in many contexts: shared multi-processor systems,

cache coherence, databases, etc.



Replication and Consistency

• Data stores can implement a range of consistency models with
different tradeoffs

• Most intuitive model: Program Order
• Read(x) returns value of most recent write to x
• Also called Strict Consistency
• Strong assumption that we often make for sequential code.
• Replicas make it challenging:

• What is “most recent” with many clients and many replicas?

Simple code example



Consistency Model Tradeoffs

• Strict Consistency is ideal from programmer/user perspective
• Challenging/impossible to realize in many distributed system

scenarios
• Usability vs. Performance vs. Fault-tolerance tradeoff.
• Many relaxed consistency models exist that dont always

return the value of most recent write.
• This lecture: understanding and implementing Sequential

Consistency



Sequential Consistency

Def
The result of any execution is the same as if the operations of all
processes were executed in some sequential order, and the
operations of each individual process appear in this sequence in the
order specified by its program.

• Concurrent operations can be “reordered” by the data store
• Operations can be interleaved

(a) Sequentially consistent. (b) Not sequentially consistent
P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(a) (b)



Execution History

Two processes P and Q share a queue.

Observed execution history:
P:Enqueue(x), Q:Enqueue(y), P:ok(), Q:ok(), P:Dequeue(),
P:ok(result=??)

• Each operation can be thought of as sending a message to the
data store

• The ok() message is the received response.

Concurrent Operations

• P doesnt communicate with Q explicitly
• P and Q’s enqueue operations are thus concurrent

Message diagram



Checking for Sequential Consistency

• With Sequential Consistency, data store can “move/slide”
concurrent operations around

• “SC Legality Test”: Given an execution history, could it have
resulted from reordering concurrent operations such that the
order of operations within a process is maintained.

Examples: (assume vars initialized to 0)
1. P:write(x,1), Q:read(x), Q:ok(0), P:ok()
2. P:write(x,1), Q:read(x), Q:ok(0), P:read(x), P:ok(0)

Clearly not what you’d expect with only one client process.



Linearizability

• Sequential consistency permits many valid outputs
• Stronger model: Linearizability
• An execution history is Linearizable if it is sequentially

consistent and the original order of operations is preserved.
• Intuitively: cannot “slide” operations around any more
• Operations can be thought of as taking effect instantaenously.
• Data store has limited flexibility in reordering concurrent

operations.
• Much more intuitive from user’s perspective.

P:W(x,1), P:ok(), Q:R(x), Q:ok(0)
This is SC but not linearizable.



Primary-based protocol for Sequential Consistency

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

• Each object has a single primary (can change over time)
• Remote-writes: All writes are blocking and forwarded to

primary for serialization
• Need to be careful about faults with non-blocking protocols



Local Read Protocol

Each replica process (P) runs the following algorithm:

• Upon read(x): Generate Ok(v). v is value of P’s copy of x;
• Write(x, v): Totally ordered broadcast(x, v);
• Receiving a broadcast message(x, v) rom Q:

1. Set local copy of x to v ;
2. If P==Q, then generate Ok() for write(x,v)

Generating a Sequentially consistent history:
• All writes are totally ordered
• Reads are inserted between appropriate writes based on value

read

Writes are slow because they only return after the broadcast is com-
pleted.Reads concurrent with a write can get different values based on
which replica they hit

Recall Totally ordered broadcast/multicast:
Two rounds of messages. 
Guarantees that all processes "see" the same total
order of operations. 



Implementing Linearizability

• Modify the local read algorithm
• All operations (including reads) require a total order broadcast
• A total order of all read and write operations that all

processes agree on, is a linearizable history.



Local Write Protocols

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

• Primary copy migrates between processes that want to write
• Example:Mobile computing in disconnected mode (ship all

relevant files to user before disconnecting, and update later).
• Lowers write latency



Replicated-write protocols

• Writes can be performed by multiple replicas
• Active replication typically used (operations sent to replicas

via total-order multicasting)
• “Centralization”: Use a sequencer for multicasting.
• All updates sent to a centralized sequencer that serializes the

updates and broadcasts them



Local Write Algorithm

Key idea: Generate ok() for write Immediately.
Maintain counter num for pending writes

Upon read(x):
• If(num == 0), then generate Ok(v)

Upon write(x,v):
• num = num+1
• totally ordered broadcast(x, v)
• Generate Ok() for write

Upon receive of broadcast (x,v) from Q:
• set local copy of x to v
• If (P==Q), then

• num = num -1
• If(num==0), then generate Ok(v)

Reads now have to wait until all pending writes clear



Proof-sketch for Local write algorithm

1. Let wj(x, a) < ri(x, a) . We need to show that another write
wk(x, b) cannot get between wj , ri.

2. 1st case: wk, ri are on same process P. But read only returns
when all broadcasting operations (including for wk) have
finished, in which case the read would return value as b, and
not a, which is a contradiction.

3. wk occurs on Q, and ri on P. Two cases again:
3.1 wk’s broadcast phase is ongoing when read is issued. This

cannot happen since all broadcasts must finish before reads
return.

3.2 wk’s broadcast finishes, and P knows that x is b. Which
contradicts ri


