
Computer Networks:
Sockets

Slides courtesy Kurose & Ross

Agenda
• Computer networks, primarily from an application perspective
• Protocol layering
• Client-server architecture
• End-to-end principle
• TCP
• Socket programming

Why Networking?

• All communication takes place over computer networks
•Networking affects how we design distributed systems:
• Architecture
• Performance
• Reliability and Resiliency

Networking Goals

• Reliable delivery of data (packets)
• Low latency delivery of data
• Utilize physical networking bandwidth
• Share network bandwidth among multiple agents

Network Elements
• Links:
• Wired or wireless

•Hosts or end-points:
• Servers/clients

• Packets:
• Units of data transmission

• Switches, Routers, Middleboxes:
• Receive, process, forward packets

Abstraction

Network debugging
• Check port availability (netstat –plant) . <1024 are privileged
• TCP client: nc . For quick testing if server is working correctly
•Many wrappers. https://docs.python.org/3/library/socketserver.html
• Be careful about data byte order and encoding.
• Sending “bits on the wire”. How are they interpreted by the receiver?

• Common issues:
• Sending data before recipient is ready
• Blocking operations

https://docs.python.org/3/library/socketserver.html

Application Layer 2-7

Sockets
• process sends/receives messages to/from its socket
• socket analogous to door
• sending process shoves message out door
• sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving
process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer 2-8

Socket programming with UDP

UDP: no “connection” between client & server
• no handshaking before sending data
• sender explicitly attaches IP destination address and port #

to each packet

• receiver extracts sender IP address and port# from
received packet

UDP: transmitted data may be lost or received out-
of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-9

server (running on serverIP) client

Application Layer 2-10

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-11

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Application Layer 2-12

Socket programming with TCP

client must contact server
• server process must first be

running
• server must have created

socket (door) that welcomes
client’s contact

client contacts server by:
• Creating TCP socket,

specifying IP address, port
number of server process

• when client creates socket:
client TCP establishes
connection to server TCP

• when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
• allows server to talk with

multiple clients
• source port numbers used

to distinguish clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Application Layer 2-13

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

TCP Connection Flow
Socket Programming With TCP

• Some operations (accept and receive) are Blocking.
• These calls wont return and the server won’t execute the next program instruction.

• Unless some client connects or sends data.
• Or the server process is signalled/killed/interrupted

Application Layer 2-15

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Application Layer 2-16

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Socket Example
!"#$"%&'()*%"+,-.)/"/0",0$$%,/"/0"1002*%"3+.$2"+0,4%/"
!")-02-'((.$2".$"56/70$"
.()0-/ +0,4%/"!"80-"+0,4%/"
.()0-/ +6+

/-69"
+": +0,4%/;+0,4%/<+0,4%/;#=>?@ABC"+0,4%/;DEFG>DBHA#IJ"
)-.$/ KD0,4%/"+3,,%++83**6",-%'/%LK

%&,%)/ +0,4%/;%--0- '+"%--9"
)-.$/ K+0,4%/",-%'/.0$"8'.*%L"M./7"%--0-"N+K N<%--J"

!"L%8'3*/")0-/"80-"+0,4%/"
)0-/": OP

/-69"
70+/>.) : +0,4%/;2%/70+/Q6$'(%<RMMM;2002*%;,0(RJ"

%&,%)/ +0,4%/;2'.%--0-9"

!"/7.+"(%'$+",03*L"$0/"-%+0*S%"/7%"70+/"
)-.$/ K/7%-%"M'+"'$"%--0-"-%+0*S.$2"/7%"70+/K
+6+;%&./<J"

!",0$$%,/.$2"/0"/7%"+%-S%-"
+;,0$$%,/<<70+/>.)C")0-/JJ"

)-.$/ K/7%"+0,4%/"7'+"+3,,%++83**6",0$$%,/%L"/0"2002*%"T
0$")0-/":: N+K"N<70+/>.)J"

Common Pitfalls
• Note that ”client” and ”server” are not permanent classifications of

processes.
• In the previous examples, they are sender and receiver
• Because TCP is connection oriented, many network services happen to
• In most distributed systems, a process is going to act as both sender and receiver at

different points in time.

• Careful with binary data! Serialize to string where possible
• Payload = pickle.dumps(pyobj) ; socket.send(payload)
• Network byte order may be different than host (little vs. big endian)

• Designing distributed systems often comes down to identifying
communication message formats and protocols ahead of time
• Who is sending what, and to whom?
• How to parse and react to messages of a certain type?
• Show me your data structures….

Network Elements
• Links:
• Wired or wireless

•Hosts or end-points:
• Servers/clients

• Packets:
• Units of data transmission

• Switches, Routers, Middleboxes:
• Receive, process, forward packets

Abstraction

Internet protocol stack
• application: supporting network

applications
• FTP, SMTP, HTTP

• transport: process-process data
transfer
• TCP, UDP

• network: routing of datagrams from
source to destination
• IP, routing protocols

• link: data transfer between
neighboring network elements
• Ethernet, 802.111 (WiFi), PPP

• physical: bits “on the wire”

application

transport

network

link

physical

1-20

TCP and IP Headers

source
application
transport
network

link
physical

HtHn M

segment Ht

datagram

destination
application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

Encapsulation
message M

Ht M

Hn

frame

1-22

Application Layer 2-23

App-layer protocol defines
• types of messages

exchanged,
• e.g., request, response

• message syntax:
• what fields in messages

& how fields are
delineated

• message semantics
• meaning of information

in fields
• rules for when and how

processes send & respond
to messages

open protocols:
• defined in RFCs
• allows for interoperability
• e.g., HTTP, SMTP
proprietary protocols:
• e.g., Skype

HTTP Header Example

ResponseRequest

Application Layer 2-25

HTTP overview

uses TCP:
• client initiates TCP

connection (creates socket)
to server, port 80
• server accepts TCP

connection from client
• HTTP messages

(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)
• TCP connection closed

HTTP is “stateless”
• server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

v past history (state) must be
maintained

v if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-26

What transport service does an app need?

data integrity

• some apps (e.g., file transfer,
web transactions) require
100% reliable data transfer

• other apps (e.g., audio) can
tolerate some loss

timing
• some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
v some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

v other apps (“elastic apps”)
make use of whatever
throughput they get

security
v encryption, data integrity,

…

Principle Of End-To-End System Design

“END-TO-END ARGUMENTS IN SYSTEM DESIGN” J.H. Saltzer, D.P.
Reed and D.D. Clark
•Where to implement functionality in a distributed system?
• Especially relevant in networking

• Example: Copy a file across the network reliably
• Option 1 : Copy file, and then verify contents using checksums
• Option 2 : Build a perfectly reliable network, routers, etc.

• Even with a perfectly reliable network, things can go wrong
• Need application level verification anyway

Principle Of End-To-End System Design (2/2)
• It is better to implement functionality at the “ends” of the network

(aka the hosts)
• Enables effective layering
• Better to implement functionality at higher layers of abstraction

• Also useful in non-network settings like operating systems
• Implementing system calls in hardware is not a great idea

Transport Layer 3-29

Transport services and protocols
vprovide logical communication

between app processes
running on different hosts

vtransport protocols run in
end systems
§ send side: breaks app

messages into segments,
passes to network layer

§ rcv side: reassembles
segments into messages,
passes to app layer

vmore than one transport
protocol available to apps
§ Internet: TCP and UDP

application
transport
network
data link
physical

logical end-end transport

application
transport
network
data link
physical

Application Layer 2-30

Internet transport protocols services

TCP service:
• reliable transport between

sending and receiving process
• flow control: sender won’t

overwhelm receiver
• congestion control: throttle

sender when network
overloaded
• does not provide: timing,

minimum throughput
guarantee, security
• connection-oriented: setup

required between client and
server processes

UDP service:
• unreliable data transfer

between sending and
receiving process
• does not provide: reliability,

flow control, congestion
control, timing,
throughput guarantee,
security, orconnection
setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-31

Sockets
• process sends/receives messages to/from its socket
• socket analogous to door
• sending process shoves message out door
• sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving
process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Transport Layer 3-32

Transport vs. network layer

vnetwork layer:
logical
communication
between hosts

vtransport layer:
logical
communication
between processes
§ relies on, enhances,

network layer
services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:
• hosts = houses
• processes = kids
• app messages = letters in

envelopes
• transport protocol = Ann

and Bill who demux to in-
house siblings
• network-layer protocol =

postal service

household analogy:

Transport Layer 3-33

Transport vs. network layer

vnetwork layer:
logical
communication
between hosts

vtransport layer:
logical
communication
between processes
§ relies on, enhances,

network layer
services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:
• hosts = houses
• processes = kids
• app messages = letters in

envelopes
• transport protocol = Ann

and Bill who demux to in-
house siblings
• network-layer protocol =

postal service

household analogy:

Transport Layer 3-34

UDP: User Datagram Protocol [RFC 768]

• “no frills,”“bare bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:
• lost
• delivered out-of-order to

app

• connectionless:
• no handshaking between

UDP sender, receiver
• each UDP segment

handled independently of
others

v UDP use:
§ streaming multimedia

apps (loss tolerant, rate
sensitive)

§ DNS
§ SNMP

v reliable transfer over
UDP:
§ add reliability at

application layer
§ application-specific error

recovery!

Application Layer 2-35

Internet transport protocols services

TCP service:
• reliable transport between

sending and receiving process
• flow control: sender won’t

overwhelm receiver
• congestion control: throttle

sender when network
overloaded
• does not provide: timing,

minimum throughput
guarantee, security
• connection-oriented: setup

required between client and
server processes

UDP service:
• unreliable data transfer

between sending and
receiving process
• does not provide: reliability,

flow control, congestion
control, timing,
throughput guarantee,
security, orconnection
setup,

Q: why bother? Why is
there a UDP?

Transport Layer 3-36

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

vfull duplex data:
§ bi-directional data flow

in same connection
§ MSS: maximum segment

size
vconnection-oriented:

§ handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

vflow controlled:
§ sender will not

overwhelm receiver

• point-to-point:
• one sender, one receiver

• reliable, in-order byte
steam:
• no “message

boundaries”

• pipelined:
• TCP congestion and flow

control set window size

Transport Layer 3-37

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-38

TCP seq. numbers, ACKs

sequence numbers:
• byte stream “number”
of first byte in
segment’s data

acknowledgements:
• seq # of next byte
expected from other side
• cumulative ACK

Q: how receiver handles out-
of-order segments
•A: TCP spec doesn’t say,
- up to implementor

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-39

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-40

TCP sender events:
data rcvd from app:
vcreate segment with seq #
vseq # is byte-stream

number of first data byte in
segment

vstart timer if not already
running
§ think of timer as for oldest

unacked segment
§ expiration interval:
TimeOutInterval

timeout:
vretransmit segment

that caused timeout
vrestart timer
ack rcvd:
vif ack acknowledges

previously unacked
segments
§ update what is known

to be ACKed
§ start timer if there are

still unacked segments

Transport Layer 3-41

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

vno explicit feedback
from network

vcongestion inferred
from end-system
observed loss, delay

vapproach taken by
TCP

network-assisted
congestion control:

vrouters provide
feedback to end systems
§ single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

§explicit rate for
sender to send at

Transport Layer 3-42

TCP congestion control: additive increase
multiplicative decrease

v approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
§ additive increase: increase cwnd by 1 MSS every

RTT until loss detected
§multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

TC
P

se
nd

er

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Performance
• Bandwidth = 1/RTT*(sqrt(2/3)*packet-loss-probability)

Four sources of packet delay

dproc: nodal processing
§ check bit errors
§ determine output link
§ typically < msec

A

B

propagation

transmission

nodal
processing queueing

dqueue: queueing delay
§ time waiting at output link

for transmission
§ depends on congestion

level of router

dnodal = dproc + dqueue + dtrans + dprop

1-44

Throughput: Internet scenario

10 connections (fairly) share
backbone bottleneck link R bits/sec

Rs

Rs
Rs

Rc

Rc

Rc

R

• per-connection end-
end throughput:
min(Rc,Rs,R/10)

• in practice: Rc or Rs is
often bottleneck

Client-server architecture

Server:
• always-on host

• permanent IP address

• data centers for scaling

Clients:
• communicate with server

• may be intermittently connected

• may have dynamic IP addresses

• do not communicate directly
with each other

Server

Client Client

Higher Level Networking
• Client/server code abstracted out (python’s twisted framework)
•Message queues: Kafka, ZeroMQ, etc
•Durability of messages (can persist on disk)
•Message lifetimes (time to live)
• Filtering, queueing policies
• Batching policies
•Delivery policies (at most once, at least once, etc)

Transport (TCP/UDP)
Network (IP)

Link (Ethernet)
Physical

application
(www browser,

email client)

application

OS

packet
capture
(pcap)

packet
analyzer

copy of all
Ethernet
frames

sent/receive
d

Debugging Networks: Packet Capture

Separation of Concerns
• Break problem into separate parts
• Solve each problem independently
• Encapsulate data across layers
• Protocol: Rules for communication within same layer
• Service: Abstraction provided to layer above
• API: Concrete way of using that service
• Layering+Encapsulation Example

