Computer Networks:
Sockets

Slides courtesy Kurose & Ross

Agenda

* Computer networks, primarily from an application perspective
* Protocol layering

e Client-server architecture
* End-to-end principle
e TCP

* Socket programming

Why Networking?

* All communication takes place over computer networks

* Networking affects how we design distributed systems:
* Architecture
* Performance
* Reliability and Resiliency

Networking Goals

* Reliable delivery of data (packets)

* Low latency delivery of data

* Utilize physical networking bandwidth

* Share network bandwidth among multiple agents

Network Elements

Network Layer Topology
e Links: c1 R1 R2 c2
* Wired or wireless g:‘:‘g ‘Tf QB@?‘TJO — Z':'O — _:J,,
* Hosts or end-points: R
e Servers/clients 192168 xx
* Packets: -

* Units of data transmission

* Switches, Routers, Middleboxes: Abstraction
* Receive, process, forward packets

A L 2

Network debugging

* Check port availability (netstat —plant) . <1024 are privileged
* TCP client: nc . For quick testing if server is working correctly
* Many wrappers. https://docs.python.org/3/library/socketserver.html

* Be careful about data byte order and encoding.
* Sending “bits on the wire”. How are they interpreted by the receiver?

* Common issues:
* Sending data before recipient is ready
* Blocking operations

https://docs.python.org/3/library/socketserver.html

Sockets

* process sends/receives messages to/from its socket

* socket analogous to door

* sending process shoves message out door

* sending process relies on transport infrastructure on other
side of door to deliver message to socket at receiving

process

application

socket
\

Internet

Application Layer

v

application controlled by
.‘@ app developer
[PP P
controlled
OS
\&
\sf

2-7

Socket programming with UDP

UDP:no “connection” between client & server

* no handshaking before sending data

 sender explicitly attaches IP destination address and port #
to each packet

* receiver extracts sender |P address and port# from
received packet

UDP: transmitted data may be lost or received out-
of-order

Application viewpoint:
* UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Application Layer

2-8

Client/server socket interaction: UDP

server (running on serverIP) client
create socket:
create socket, port= x: clientSocket =
serverSocket = socket(AF_INET,SOCK_DGRAM)

socket(AF _INET,SOCK DGRAM)
Create datagram with server IP and

read datagram f. clientSocket

serverSocket

write reply to —

serverSocket — read datagram from
specifying clientSocket

client address,

port number close

clientSocket

Application 2-9

Example app: UDP client

Python UDPClient
include Python’s socket

library » from socket import *
serverName = ‘hostname’
serverPort = 12000
create UDP socket for clientSocket = socket(socket. AF_INET,
server socket.SOCK_DGRAM)
message = raw_input(Input lowercase sentence:’)

> clientSocket.sendto(message,(serverName, serverPort))
Attach server name, port to .
message: send into sosket—» ModifiedMessage, serverAddress =

get user keyboard
input

read reply characters from —» clientSocket.recvfrom(2048)
socket into string print modifiedMessage

clientSocket.close()
print out received string ——

and close socket

Application Layer

2-10

Example app: UDP server

Python UDPServer

from socket import *

serverPort = 12000
~serverSocket = socket(AF_INET, SOCK_DGRAM)
' serverSocket.bind((", serverPort))

create UDP socket

bind socket to local port

number 12000 print “The server is ready to receive”

while 1:
loop forever > message, clientAddress = serverSocket.recvfrom(2048)
Read from UDP socket into _ modifiedMessage = message.upper()

message, getting client’s

address (client IP and port) serverSocket.sendto(modifiedMessage, clientAddress)

send upper case string >

back to this client

Application Layer 2-11

Socket programming with TCP

client must contact server « when contacted by client,

* server process must first be server TCP creates new socket
running for server process to

* server must have created communicate with that
socket (door) that welcomes particular client
client’ s contact « allows server to talk with

client contacts server by: multiple clients

* source port numbers used

Creating TCP socket, to distinguish clients

specifying |P address, port
number of server process

* when client creates socket: appllcatlon.wewpo.lnt. .
client TCP establishes TCP provides reliable, in-order
connection to server TCP byte-stream transfer (" pipe”)
between client and server

Application Layer 2-12

Client/server socket interaction: TCP

server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming TCP create socket,

connection request ¢= == == == == = = =) connectto hostid, port=x
connectionSocket = CONNection setup clientSocket = socket()
serverSocket.accept()

1 send reauest using
read fequest from / clientSocket
connectijonSocket

write reply to 4
connectionSocket —.read reply from
clientSocket

!

close 1

connectionSocket close 1
clientSocket

Application Layer 2-13

TCP Connection Flow

Server
socket —» bind | listen —¥» accept receive—»| send —» close
A 4
Synchronization point —i /I Communication ",
\ 4 / A |
socket P connect—»{ send —————> receive | close

Client k

* Some operations (accept and receive) are Blocking.

* These calls wont return and the server won’t execute the next program instruction.
* Unless some client connects or sends data.
* Or the server process is signalled/killed/interrupted

ExamEIe aEE:TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

b oMot ot 73000 clientSocket = socket(AF_INET, SOCK_STREAM)

—'clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)

E;r:ee’esotr? attach server______,modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Application Layer

2-15

Example app: TCP server

create TCP welcoming
socket >

server begins listening for
incoming TCP requests

loop forever ~

server waits on accept()
for incoming requests, new
socket created on return

Python TCPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF _INET,SOCK_STREAM)
serverSocket.bind((”,serverPort))
serverSocket.listen(1)
print “The server is ready to receive’
while 1:
connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()

read bytes from socket (but
not address as in UDP)

> connectionSocket.send(capitalizedSentence)
connectionSocket.close()

close connection to this ———

client (but not welcoming
socket)

Application Layer

2-16

Socket Example

An example script to connect to Google using socket
programming in Python

import socket # for socket

import sys

try:
s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
print "Socket successfully created"

except socket.error as err:
print "socket creation failed with error %s" %(err)

default port for socket
port = 80

try:
host_ip = socket.gethostbyname('www.google.com’)
except socket.gaierror:

this means could not resolve the host

print "there was an error resolving the host"
sys.exit()

connecting to the server
s.connect((host_ip, port))

print "the socket has successfully connected to google \
on port == %s" %(host_ip)

Common Pitfalls

* Note that “client” and "’server” are not permanent classifications of
processes.
* In the previous examples, they are sender and receiver
* Because TCP is connection oriented, many network services happen to
* In most distributed systems, a process is going to act as both sender and receiver at

different points in time.
* Careful with binary data! Serialize to string where possible

* Payload = pickle.dumps(pyobj) ; socket.send(payload)
* Network byte order may be different than host (little vs. big endian)

* Designing distributed systems often comes down to identifying
communication message formats and protocols ahead of time
* Who is sending what, and to whom!?
* How to parse and react to messages of a certain type!
* Show me your data structures....

Network Elements

Network Layer Topology
e Links: c1 R1 R2 c2
* Wired or wireless g:‘:‘g ‘Tf QB@?‘TJO — Z':'O — _:J,,
* Hosts or end-points: R
e Servers/clients 192168 xx
* Packets: -

* Units of data transmission

* Switches, Routers, Middleboxes: Abstraction
* Receive, process, forward packets

A L 2

Internet Erotocol stack

- application: supporting network
applications

* FTRSMTPHTTP application
- transport: process-process data
transfer transport
« TCP,UDP
- network: routing of datagrams from network
source to destination
* IP, routing protocols link
« link: rglbata transfer be'lcwelen
neighboring network elements :
+ Ethernet, 802.111 (WiFi), PPP physical

- physical: bits “on the wire”

1-20

TCP and IP Headers

31 bit

0 4 8 16
Version| IHL | TOS Total length
Identification Flags | Fragment offset
TTL I Protocol Header checksum

Source address

Destination address

Options

Data —

20
bytes

16 bits

16 bits

v
.

Source Port (16 bits)

Destination Port (16 bits)

Sequence number (32 bits)

Acknowledgement number (32 bits)

ponsunrd ar-e-bnay B AleIRIS|E Window Size (16 bits)
9 : (Advertisement Window)
(4 bits)| (6bits) |G | K |H|T|N|N
Check sum (16 bits) Urgent Pointer (16 bits)
> Options -
=1 (0-40 bytes) =
& Data (Optional) &

TCP Header

Encapsulation

message | M appli¢ation
segment | Hy M tran:isport \
datagram |Hp| Hi| M network =
frame |Hj|Hn|l Ht| M link -
phy:l;ical
link I
physical @?7
switch
destination Ho| Hy| M network
M oplication Hi|Hn| He| M link Hol He| M
H ™ | [|transport \y: physical S
Ho| Ht| M network :
Hi|Hn Hi| M link \\f/ router
—physical

1-22

AEE-Iaxer protocol defines

* types of messages open protocols:
exchanged, . .
* defined in RFCs

* e.g,request, response
* message syntax: * allows for interoperability

* what fields in messages * eg,HTTP,SMTP
& how fields are . .
delineated proprietary protocols:
* message semantics * e.g., Skype
* meaning of information
in fields

* rules for when and how
processes send & respond
to messages

Application Layer

2-23

HT TP Header Example

Status code

Path Version of thg protocol ge}tus message
Method A\ Version of the protocol [HTTP/1.1][200][0K |

Date: Sat, 09 Oct 2010 14:28:02 GMT
Server: Apache
GET |/ [HTTP/1.1 Last-Modified: Tue, @1 Dec 2009 20:18:22 GMT

Host: developer.mozilla.org ETag: "51142bc1-7449-479b075b2891b"
Accept-Ranges: bytes
Accept-Language. fr Content-Length: 29769

Content-Type: text/html

Headers -

Request Response

HTTP overview

uses TCP: HTTPis ‘stateless ”
* client initiates TCP * server maintains no
connection (creates socket) information about
to server, port 80 past client requests

* server accepts TCP

connection from client — aside
protocols that maintain
* HTTP messages

cation] | “state” are complex!
(application-layer protoco » past history (state) must be
messages) exchanged

maintained
between browser (HTTP < if server/client crashes, their
client) and Web server views of “state” may be
(HTTP server) inconsistent, must be
reconciled

e TCP connection closed

Application Layer 2-25

What transport service does an app need!?

data integrity

* some apps (e.g., file transfe
web transactions) require

|00% reliable data transfer

* other apps (e.g.,audio) can
tolerate some loss

timing
* some apps (e.g., Internet
telephony, interactive

games) require low delay
to be “effective”

throughput

\/
0’0

5

some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

other apps (" elastic apps”)
make use of whatever
throughput they get

security

\/
0’0

Application Layer

encryption, data integrity,

2-26

Principle Of End-To-End System Design

“END-TO-END ARGUMENTS IN SYSTEM DESIGN” J.H. Saltzer, D.P.
Reed and D.D. Clark

* Where to implement functionality in a distributed system?
* Especially relevant in networking

* Example: Copy a file across the network reliably

* Option | : Copy file, and then verify contents using checksums
* Option 2 : Build a perfectly reliable network, routers, etc.

* Even with a perfectly reliable network, things can go wrong
* Need application level verification anyway

Principle Of End-To-End System Design (2/2)

* |t is better to implement functionality at the “ends” of the network
(aka the hosts)

* Enables effective layering
* Better to implement functionality at higher layers of abstraction

* Also useful in non-network settings like operating systems
* Implementing system calls in hardware is not a great idea

TransEort services and Erotocols

application
»provide logical communication
o] _
between app processes e
running on different hosts

sstransport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

® rcv side: reassembles
segments into messages,
passes to app layer

‘*more than one transport
protocol available to apps

= [nternet: TCP and UDP

Transport Layer 3-29

Internet transport protocols services

g

TCP service: UDP service:

* reliable transport between * unreliable data transfer
sending and receiving process between sending and

e flow control: sender won’ t recelving process

overwhelm receiver * does not provide: reliability,
* congestion control: throttle flow control, congestion
sender when network control, timing,
overloaded throughput guarantee,
security, orconnection

* does not provide: timing,

minimum throughput Setup,
guarantee, security

* connection-oriented: setup Q: why bother? Why is
required between client and there a UDP?

Server processes

Application Layer 2-30

Sockets

* process sends/receives messages to/from its socket

* socket analogous to door

* sending process shoves message out door

* sending process relies on transport infrastructure on other
side of door to deliver message to socket at receiving

process

application

socket
\

Internet

Application Layer

v

application controlled by
.‘@ app developer
[PP P
controlled
OS
\&
\sf

2-31

Transport vs. network layer

“*network layer:

\ - household analogy:
ogical sehold a |
communication |2 kids in Ann " s house sending
letters to |2 kids in Bill ~ s
between hosts house-
*1*transport Iayer: * hosts = houses
oglcal o * processes = kids
communication * app messages = letters in
petween processes envelopes
" relies on, enhances, * transport protocol = Ann
network layer and Bill who demux to in-
services house siblings
* network-layer protocol =

postal service

Transport Layer 3-32

Transport vs. network layer

“*network layer:

\ - household analogy:
ogical sehold a |
communication |2 kids in Ann " s house sending
letters to |2 kids in Bill ~ s
between hosts house-
*1*transport Iayer: * hosts = houses
oglcal o * processes = kids
communication * app messages = letters in
petween processes envelopes
" relies on, enhances, * transport protocol = Ann
network layer and Bill who demux to in-
services house siblings
* network-layer protocol =

postal service

Transport Layer 3-33

UDP: User Datagram Protocol [RFC 768]

e “nofrills,” “bare bones” % UDP use:
Internet transport protocol = streaming multimedia
e “best effort” service, UDP apps (loss tolerant, rate
segments may be: sensitive)
* lost = DNS
 delivered out-of-order to = SNNMP
app + reliable transfer over
e connectionless: UDP:
* no handshaking between = add reliability at

UDP sender, receiver

* each UDP segment
handled independently of
others

application layer
" application-specific error
recovery!

Transport Layer

3-34

Internet transport protocols services

g

TCP service: UDP service:

* reliable transport between * unreliable data transfer
sending and receiving process between sending and

e flow control: sender won’ t recelving process

overwhelm receiver * does not provide: reliability,
* congestion control: throttle flow control, congestion
sender when network control, timing,
overloaded throughput guarantee,
security, orconnection

* does not provide: timing,

minimum throughput Setup,
guarantee, security

* connection-oriented: setup Q: why bother? Why is
required between client and there a UDP?

Server processes

Application Layer 2-35

TCP OverVieW RFCs:793,1122,1323,2018, 2581

o Point-to-Point; s full duplex data:
e one sender, one receiver " bi-directional data flow
. . in same connection
¢ I‘Ellab|e, In-Or'deI" byte = MSS: maximum segment
steam: size
* no “messz’l’ge “*connection-oriented:
boundaries " handshaking (exchange
T f control msgs) inits
* pipelined: © 158
PIP sender, receiver state

* TCP congestion and flow before data exchange

control set window size
*»*flow controlled:

= sender will not
overwhelm receiver

Transport Layer

3-36

TCP segment structure

« 32 bits

URG: urgent data

dest port #

v

counting

(generally not used)\ source port #

ACK: ACK #
valid

. sequence number

by bytes
of data

\kngwledgement number

(not segments!)

PSH: push data now
(generally not used) —]

head|n
len _@d_EAIEJVRSF receive window

7

Urg data pointer

bytes
rcvr willing

RST, SYN, FIN:/
connection estab

op}{ s (variable length)

to accept

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data

(variable length)

Transport Layer

3-37

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers:

* byte stream “number”
of first byte in
segment’ s data

acknowledgements:

* seq # of next byte
expected from other side

e cumulative ACK

Q: how receiver handles out-
of-order segments

* A:-TCP spec doesn’ t say,
- up to implementor

source port # dest port #

sequence number

acknowledgement number

rwnd

checksum

urg pointer

wmdow SI

sender sequence number space

sent
ACKed

Transport Layer

sent not- usable not
yet ACKed but not usable
(“in- yet sent

flight”)

incoming segment to sender

source port #

dest port #

A

sequence number

lll 2cknowledgement number

rwnd

checksum

urg pointer

3-38

TCP seq. numbers, ACKs

Host A Host B
User -
types —
Seq=42, ACK=79, data = ‘C
\ host ACKs
receipt of
‘C’, echoes
Seq=79, ACK=43, data = ‘C’ ‘7
host ACKs ! back "C
receipt
of echoed ———___
‘C,

Seq=43, ACK=K>

simple telnet scenario

Transport Layer 3-39

TCP sender events:

data rcvd from app:
“*create segment with seq #

“*seq # is byte-stream
number of first data byte in
segment

“sstart timer if not already
running
* think of timer as for oldest
unacked segment

" expiration interval:
TimeOutInterval

timeout;

“*retransmit segment
that caused timeout

*restart timer
ack revd:

»if ack acknowledges
previously unacked
segments

" update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-40

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion __ _network-assisted o
control: congestion control:
“*no explicit feedback “*routers provide
from network feedback to end systems
“*congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
. ATM)
*sapproach taken by U
TCP = explicit rate for
sender to send at

Transport Layer 3-41

TCP congestion control: additive increase
multiplicative decrease

% approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
o ... until loss occurs (then cut window in half)
[-%
AIMD saw tooth 8 &
behavior: probing § s N4

for bandwidth O 5

o

vo

5 3

time
Transport Layer 3-42

TCP Performance
* Bandwidth = |/RTT*(sqrt(2/3)*packet-loss-probability)

Four sources of packet delax

transmission

processing queueing

dnodal = dproc T dqueue + dtrans +d

prop
d,oc: Nodal processing dgueue: qUeueing delay
= check bit errors * time waiting at output link
= determine output link for transmission
= typically < msec " depends on congestion

level of router

1-44

Throughput: Internet scenario

- per-connection end-
end throughput:

min(R_,R,,R/10)
- in practice:R. or R, is
often bottleneck

B ;
i v/ ‘ N L
N\

|

—
—
—
—

(—

10 connections (fairly) share
backbone bottleneck link R bits/sec

Client-server architecture

Server:
* always-on host
Server « permanent IP address

* data centers for scaling

Clients:
e communicate with server
) . * may be intermittently connected
Client Client 4 4
* may have dynamic IP addresses

* do not communicate directly
with each other

Higher Level Networking

* Client/server code abstracted out (python’s twisted framework)
* Message queues: Kafka, ZeroMQ, etc

* Durability of messages (can persist on disk)

* Message lifetimes (time to live)

* Filtering, queueing policies

* Batching policies

* Delivery policies (at most once, at least once, etc)

Debugging Networks: Packet Capture

application

packet (www browser,
analyzer email client)

packet Transport (TCP/UDP)

Network (IP)
Link (Ethernet)
Physical

capture

Separation of Concerns

* Break problem into separate parts

* Solve each problem independently

* Encapsulate data across layers

* Protocol: Rules for communication within same layer
* Service: Abstraction provided to layer above

* API: Concrete way of using that service

* Layering+Encapsulation Example

