Global Snapshots

Global State

Changes when events occur (local, messages)

Capturing global state in distributed systems is challenging because of
asynchronous nature of computation and communication

Time based snapshots: Every process saves its own state at the “same time”
Analogy: Composite picture of flying birds in the sky
- Can’t capture entire field of view in single snapshot

- Multiple snapshots necessary to get a global picture

-~ But birds can move around etc. What if we want to count total number of
birds?

This class: event-based: using happened before relationships

Why Global Snapshots

Checkpointing: If application fails, resume from earlier state’s snapshot
Debugging
Garbage collection: delete unreferenced objects

Useful to detect “Stable properties”
- A stable property persists throughout application execution

-~ Such as termination, deadlock

If a stable property holds before snapshot begins, it holds in the recorded
global snapshot

Single Process Checkpointing
« Local process state saved to stable storage (disk)
« Offline: stop process execution and save all local state

« Online/Live: process continues executing when snapshot
IS taken

Snapshot Requirements

. "Live”: applications shouldn’t stop sending messages /
making forward progress

« Each process can take snapshot of local state

« Any process can initiate snapshot

Cuts

« Snapshots also referred to as “cuts”

. Line joining arbitrary point in time on each process that slices the space-time
diagram into a past and future

« Acutis a set of local states of processes, and state of all communication
channels (messages in transit)

. Consistent cut: for any received message in the cut, the send event must
also be in the cut

® Snapshots must comprise of concurrent events

® Consistent cut C is subset of events s.t.: forallein C: Ifd —e, thendisin C

Distributed Global Snapshot Challenges

Recorded global states are mutually concurrent

State of communication channels is captured somehow

- Let processes record sent messages

Basic Idea: Processes send a “marker” message to initiate/propagate a
snapshot

2 states: White: no marker rcvd. Red: marker rcvd

Once a process turns red, it must send marker along all outgoing channels
before sending any message

Processes in red state start recording all incoming messages

Message Types

ww: Sent and received by white processes, before global
snapshot

rr: Sent and received by red processes after snapshot

rw: Sent by red, but received by white. These cross the cut in
backward direction and make the cut inconsistent.

wr: Cross the cut in the forward direction and are part of the
global state.

FIFO assumption: If you receive a marker from a process, then
all subsequent messages from it will be rr and need not be
recorded.

Chandy-Lamport

Process save local state and state of all incoming
communication channels

Initiates snapshot by turning red, and sending special
“marker” message to all others

Start recording all incoming messages

Termination: When each process has received a marker on
all its incoming channels

Chandy-Lamport Algorithm
def turn_red() enabled if (color==white):
save_local state;
color = red ;
send(marker) to all neighbors

def receive(marker) on incoming channel j:
if(color==white):
turn_red();
closed[j] = true; #Initialized to false

def receive(message) on incoming channel j:
if(color==red and not closed[j]):
chan[j].append(message)

pz initiates the algorithm

a

<>
<>

20 C21

30 C23

pz initiates the algorithm

-
-
—

= <>

25 C21

= <>

39 C23

(75)

<>

C12

C32

pz initiates the algorithm

<>
3= <>
= (75)
30 = <>

Homework

« Snapshot initiated by p1
just after e1

Vector Clock View

Cut: set of states from each process.

Consistent: States should be pairwise concurrent
. Easy to verify with vector clocks

Intuition: All processes take snapshot at future time ‘K’

Process i initiates checkpoint at K =V _i + increment local component
 Broadcasts K;
« All processes take local snapshot when they reach time stamp K

« Initiator process sends second dummy’ broadcast

Vector Clock View

Let Vi be the vector clock of process i exactly at i's cut-point. Let
K=max(V,, V,, ... V,).

Thm: Cut is consistent iff for every i, K(i) = V.(i)

That is, the maximum information about process-i that is known
by anyone at the cut is the same as what it knows about itself at
its cut point

- No one else knows more about | than | know myself know

This rules out receiving message before its cutpoint that was
sent after its cut-point, because otherwise the recipient would
hav? more info about the sender than the sender had about
itself.

Vector Clock View Continued

Let Vi be the vector clock of process i exactly at i’s cut-
point. Let K =max(V,, V,, ... V,).

Thm: Cut is consistent iff for every i, K(i) = V(i)
Restatement: for every i and j, V(i) = V(i)

All events before the snapshot happen-before all events
after the snapshot

