
Global Snapshots

Global State
l Changes when events occur (local, messages)

l Capturing global state in distributed systems is challenging because of
asynchronous nature of computation and communication

l Time based snapshots: Every process saves its own state at the “same time”

l Analogy: Composite picture of flying birds in the sky

- Can’t capture entire field of view in single snapshot

- Multiple snapshots necessary to get a global picture

- But birds can move around etc. What if we want to count total number of
birds?

l This class: event-based: using happened before relationships

Why Global Snapshots

l Checkpointing: If application fails, resume from earlier state’s snapshot

l Debugging

l Garbage collection: delete unreferenced objects

l Useful to detect “Stable properties”

- A stable property persists throughout application execution

- Such as termination, deadlock

l If a stable property holds before snapshot begins, it holds in the recorded
global snapshot

Single Process Checkpointing
l Local process state saved to stable storage (disk)

l Offline: stop process execution and save all local state

l Online/Live: process continues executing when snapshot
is taken

Snapshot Requirements
l “Live”: applications shouldn’t stop sending messages /

making forward progress

l Each process can take snapshot of local state

l Any process can initiate snapshot

Cuts
l Snapshots also referred to as “cuts”

l Line joining arbitrary point in time on each process that slices the space-time
diagram into a past and future

l A cut is a set of local states of processes, and state of all communication
channels (messages in transit)

l Consistent cut: for any received message in the cut, the send event must
also be in the cut

l Snapshots must comprise of concurrent events

l Consistent cut C is subset of events s.t.: for all e in C: If d →e, then d is in C

Distributed Global Snapshot Challenges
l Recorded global states are mutually concurrent

l State of communication channels is captured somehow

- Let processes record sent messages

l Basic Idea: Processes send a “marker” message to initiate/propagate a
snapshot

l 2 states: White: no marker rcvd. Red: marker rcvd

l Once a process turns red, it must send marker along all outgoing channels
before sending any message

l Processes in red state start recording all incoming messages

Message Types
l ww: Sent and received by white processes, before global

snapshot

l rr: Sent and received by red processes after snapshot

l rw: Sent by red, but received by white. These cross the cut in
backward direction and make the cut inconsistent.

l wr: Cross the cut in the forward direction and are part of the
global state.

l FIFO assumption: If you receive a marker from a process, then
all subsequent messages from it will be rr and need not be
recorded.

Chandy-Lamport
l Process save local state and state of all incoming

communication channels

l Initiates snapshot by turning red, and sending special
“marker” message to all others

l Start recording all incoming messages

l Termination: When each process has received a marker on
all its incoming channels

def turn_red() enabled if (color==white):
save_local_state;
color = red ;
send(marker) to all neighbors

def receive(marker) on incoming channel j:
if(color==white):

turn_red();
closed[j] = true; #Initialized to false

def receive(message) on incoming channel j:
if(color==red and not closed[j]):

chan[j].append(message)

Chandy-Lamport Algorithm

Homework
l Snapshot initiated by p1

just after e1

Vector Clock View
l Cut: set of states from each process.

l Consistent: States should be pairwise concurrent

l Easy to verify with vector clocks

l Intuition: All processes take snapshot at future time ‘K’

l Process i initiates checkpoint at K = V_i + increment local component

l Broadcasts K ;

l All processes take local snapshot when they reach time stamp K

l Initiator process sends second `dummy’ broadcast

Vector Clock View
l Let Vi be the vector clock of process i exactly at i’s cut-point. Let

K = max(V1, V2, … Vn).
l Thm: Cut is consistent iff for every i, K(i) = Vi(i)
l That is, the maximum information about process-i that is known

by anyone at the cut is the same as what it knows about itself at
its cut point
- No one else knows more about I than I know myself know

l This rules out receiving message before its cutpoint that was
sent after its cut-point, because otherwise the recipient would
have more info about the sender than the sender had about
itself.

Vector Clock View Continued
l Let Vi be the vector clock of process i exactly at i’s cut-

point. Let K = max(V1, V2, … Vn).

l Thm: Cut is consistent iff for every i, K(i) = Vi(i)

l Restatement: for every i and j, Vj(i) ≤ Vi(i)

l All events before the snapshot happen-before all events
after the snapshot

