MapReduce

Agenda

 Why distributed data processing?

* Simple data parallelization

* The MapReduce system

* How MapReduce works

* Google File System for distributed storage
« MapReduce examples

* Fault-tolerance

 Map reduce performance Issues

* Limitations

Processing Data

* Data on file system on
disk
e Simple processing flow:
e 1. Read into memory

e 2. Process data (apply some
function)

/T 3. Write back to disk
_—

Why Multiple Servers?

* Data size larger than disk
capacity

* Sequentially processing data can
be slow
* Limited by disk read/write speeds

 Parallel processing can significantly
reduce time

* Single point of failure with a
single server

Multiple Servers: Divide and Conquer

Ge? * Divide input data among multiple servers
 Each server processes a partition in parallel
« 7?77

e Profit!?

e Data processed by individual servers
must be “aggregated” or collected

. May require significant
?)Q/ communication

M
S G(F(X[0..N/21), N\Q/

F(X[N/2..N]))

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
jeff@google.com, sanjay @google.com

Google, Inc.

Abstract given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually

MapReduce is a programming model and an associ- 3500 and the computations have to be distributed across

ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value

Published at OSDI 2004.
>25,000 citations

Why MapReduce?

 Automated parallelization and distribution of data and
processing

* Clean, powerful, well-understood abstraction (Map and
Reduce)

* Fault-tolerance
* Scalability: 1000s of servers, TBs of data, ...

* Apache Hadoop: widely used open source Java
Implementation

Some MapReduce Problems

 Word-count

-+ Creating an inverted index
7» Which documents does a word occur in?
« Useful if you are building a search engine

* Log-processing
* Filter log messages which match some
condition

 |P address == 156.54.61.*

* Matrix processing
 PageRank, matrix multiplication, ...

(List (Processing (Like) It's) 1959)

* LISP: Everything is a List Reduce: Aggregate values in a
«(123456) list

« Map: Apply a function * Also called foIdL’/K’PGQ, V}"?Z
element-wise e (reduce sum ‘(1 2 345))

» (map square ‘(123 4 5)) P> 1S \
e -> (14916 25) e Can pass any associative
] function « » vz

) @/3MS> =(+ x D T2
5 (2 49) (red ¥ 7\(nap sq ‘(12
N o uce sum (map square
, 345)))

-> Sum of squares

Map Reduce Semantics

* Map: (k1, v1) -> list(k2, v2)
 Reduce: (k2, IiE,t(va)) ->

. Keys with all
I ! St (v 3) Key—value their values
! pairs (k. [v.w....])
Input R (k.v)
@ chunks I

Combined

——
\ ouftput

Map Group
tasks by keys

Reduce
tasks

MapReduce System Architecture

@ =] @ e
Vans] \l/ \qjg ;M@m ¢
values..) values.) values..]) values) 4"
j — Banier == ggmgj'.-shterm ate values by l|:. v L l‘L_,__.-—-.g ‘ \]\fa\l E){ ch\jk
o | amer

Computation Flow

 Map tasks turn chunks into series of key-value pairs based on
user-provided fn

» Key-value pairs from all map tasks are collected and
sorted/grouped by key

 Each reducer task gets a subset of keys
 Master uses a hash function to assign a key to one of R reducers

* All key-val pairs with the same key are processed by the same reducer
task

* Reducer tasks process one key at a time, and combine all values
associated with that key based on reduce function

(
oM bine

-
=S |
c oo EX -
//
fonchon

3 O
QE\A/
‘N\h .
= F"/V//(X\
I :
maiper\] [ZVW \
A N
l o ||
mappe
. .
/(¥ O M>’§LM(
/Y D\‘J\«\EO’\

K, : ’} :
\é
’\.\\ E\ >
S u
W
a‘
gg)/\
|| || “ d |egate \'
D
H\“S

/,, 7>
[

(7\3§J\ L/£ re : %

'duc H

s) | =

5 redilcer] 2
g’ 9
nz [reducer.] 8
AR
&%WW\
ne Y

Distributed File System

« MapReduce distributes computation

 Distributing and managing data is as important,
If not more

e Storing data centrally:
* |/O bottleneck

* Processing data in parallel not very useful if limited by
single disk

Data Storage: Google File System
The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.
While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment. both current and anticipated, that reflect a marked

S g S [o I L I PR

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-

tinnal chalcoe and avnlarad radicallsr AifForant nainte 1n tha

Google File System

» Distributed FS for large datasets
* Supports read, write, open, close, record-append operations

 Can run on off-the-shelf computing clusters
* No specialized hardware required

* Provides fault tolerance via replicating each piece of data
three times

* Replicas can also be used for load balancing

\" PU\ " ﬁ;(& {

| > < AN mk
Overlay File Systems _&le g™

 Data is stored in “chunk servers” //\%\6
« HDFS files: sequence of chunks N
* Chunks are just large blocks (64MB) j] ' / B

* Chunk-servers store chunks as files in a local file-system
(such as ext4)

 HDFS files are indexed by a central “namenode”

* (HDFS-file-name, chunk-number) -> Chunk-servers, chunk-
handle R) ot
Lo Be AT \O O 1D, e

D —

GFS Architecture

Application

GFES client

(file name, chunk index)

-

e}

(chunk handle,
chunk locations)

(chunk handle, byte range)

GFS master

File namespace

i
I
i
i
/
¢
;
’
/
&
&
P

- /foo/bar

chunk 2ef0

Instructions to chunkserver

Chunkserver state

chunk data

GFS chunkserver

Le;

GFS chunkserver

Linux file system

Linux file system

B9 -

99

MapReduce Examples
& SAY WORD-GOUNT

l.'a
i _".
. - 4
¥ >
1?; i 4
-
L

Word-count

« Mapper: Emit (word,1) pairs
* Grouping by key :

e (the,1), (the,1),.... : Sent to Reducer 0
* (apple, 1), (apple,1),.... : Sent to Reducer 1
e (car, 1), (car,1)..... : Sent to Reducer 2
e (dog, 1), (dog,1),.... : Sent to Reducer 0

 Reducer function is simple addition, and each reducer outputs:
e (the, 102)
* (apple, 4)

Grep

 Mapper: Emit (word, line-number) pairs

* Grouping by key :
 (wordl, [line-1, line-4, line-3, line-2, line-100])
 (word2, [line-3, line-4, line-6, line-7])

 Map output is usually sorted by key:

 (wordl, [1,2,3,4,100])
 (word2, [3,4,6,7]

* Reducer:
* Do nothing

Combiners

e Sometimes, Reduce function is associative and commutative
e f(f(a, b), c) =f(a, f(b, ¢))
e f(a, b) = f(b, a)
« Example: Addition

* In such cases, can combine map-output before sending to
reducer

* |In case of word-count example:
 Map-output: [(word-1,1), (word-1, 1),...,, (word-2,1)...]
e With combiner: [(word-1, 20), (word-2, 12)]

Map Output (Intermediate Data)

 Each mapper groups its output by key
 Usually done by sorting entire local map output

* Creates an intermediate file for each reducer
* If M mappers and R reducers: up to M*R total intermediate files

Matrix-Vector Multiplication

* Matrix, M and vector, v.Want to multiply : Mv
* V=[vl,...vn]. M is nXn matrix

* Matrix partitioned by row
* Map: outputs (i, m;; * v;)

* Reduce: sum up all values for each key to output (i, x;)

* QS:What if we can’t fit vin memory?

* QS: Co-occurrence matrix of words in a corpus

Inverted Index

* How many times does a word
occur in each document?

doc 1
one fish, two fish

doc 2
red fish, blue fish

doc 3

one red bird

Y

‘ mapper \

fish |d,| 2

. one |d, | 1
|
1
1
1
1

y
mapper |

: I
| blue |dyf 1|
| |
o fish [dy | 2| !
! 1
' 1
' 1
! red |[d,| 1 |
' I

‘ mapper \

Y

dy || 1
dy || 1
dy || 1

Shuffle and Sort: aggregate values by keys

reducer \

dl 2| ' bid
dy || 1 | blue
o
[red
(|
(|
I

reducer

dy || 1
dy || 1
do |l 1]]d,| 1

Relational Operations

« MapReduce can also be used to run relational operations
* Select, Project, Joins, ...

e Selection and projection are straight forward (essentially just
filtering using map)

* Natural joins with MapReduce
e Assume: R(a,b) and S(b,c) are two relations

« Map: Emit (b, (R, a)) Where R is just the relation name and a
lltag"

* Reduce: For each key (b), output all tuples in the values list (a,c)
* Apache Hive translates SQL queries into a MapReduce program

Fault-Tolerance

* Master fails
 Switch to secondary master
» Restart entire job

* Worker fails
 If running map: restart map tasks on available/free worker nodes
* If running reduce: restart reducer tasks

* File-system (HDFS/GFS) has a single master node
* FS index stored in memory

Performance Issues

 Map output barrier : Even partitioning of mappers workload
required
« Usually achieved by evenly splitting the input
 Assumes that element-wise map function has uniform cost

* Speculative execution (backup tasks)
 Run the same task on multiple workers
 |[f some workers are slow (stragglers)

* Reducer skew: A major problem

* Recall that all values of a specific key must be handled by same
reducer

 What if there’s a really popular key?

MapReduce Limitations

e —

 Static data
. Apr.)en.d-only usually O.K :I/
» Restrictive programming model

* No support for dataflows

* How many mappers and reducers?
* How much memory to allocate?

* Purely batch processing
* Jobs can take hours to complete
* No streaming, interactive analytics

When NOT To Use MapReduce

« Modern computing hardware has plenty of computing power:
* A typical laptop: 8 cores, 16 GB RAM, 512 GB SSD (usually NVMe)
* A typical server: 64 cores, 256 GB RAM, 2 TB SSD, ...

* |s your dataset really that large?
 Wikipedia: 30 GB
* |In many cases, an optimized non-distributed implementation

beats a large cluster (!)
 Frank McSherry’s blog

