
Resource Management With Virtualization

1 / 24

Agenda

Cluster-level resource management
VM Resource Overcommitment

2 / 24

VM Sizes

Hypervisor allocates all VMs with many resources:
1 CPU cycles (i.e., bandwidth)
2 Physical memory
3 Disk bandwidth
4 Virtual disk size
5 Network bandwidth
6 More recently: Special purpose accelerators (GPUs, FPGAs,

ASICs)
Common to express resource allocations in form of resource vectors.

3 / 24

Virtualization For Resource Allocation

Virtualization makes fine-grained resource allocation easy
VMs serve as units of allocation
Resource management layer (i.e., OS or hypervisor) can set
resource limits on the VM
Resource limits can often by dynamically changed (e.g., reduce
CPU allocation to 2 cores from 4)

4 / 24

Resource Allocation In Clusters

Clusters consist of large numbers of servers (102 − 106)
Resources can be allocated from multiple servers
Resources allocated as VMs on individual servers
Allocation decisions made by cluster management software

OpenStack, VMWare for VMs
Kubernetes, Mesos, Docker swarm for containers
Slurm, Torque for HPC...

5 / 24

High-Level Resource Allocation Flow

1 Applications/Users submit resource requirements (R)
Total number of resources (CPU cores, memory, I/O bandwidth), or
Size of VM × number of VMs

2 Each server has a hardware capacity (e.g., 48 cores, 512 GB
memory) (C)

3 Cluster manager finds free resources on servers to satisfy
allocation request

4 In practice, many other allocation constraints:
Application quotas: does user have enough “credits”
Job start/end deadlines
Affinity: VMs should be running on same/nearby servers
Anti-affinity: VMs on different servers for fault tolerance
Co-location: Applications should not be running on servers with
another application

6 / 24

Resource Allocation Policies

At a high level, resource allocation is a bin-packing problem
Also called the “placement” problem
Which servers to place the VMs on?

Best fit: Allocate resources from server with most free resources
available
Worst fit: Server with least free resources
First fit: Sort by server-id

However, this is a multi dimensional packing problem : resources,
r=(CPU, mem, disk, network)

7 / 24

Multi-dimensional Packing

Use cosine similarity between resource requirement and availability
vectors: fitness =

r · a
|r||a|

a is the resource availability on the server
a = Server Capacity−

∑
VM sizes

Other heuristics also possible:
L2-norm-diff :

∑
(ri − ai)2

L2-norm-raito:
∑ ri

ai

First-fit-decreasing prod:
∏

ri

FFD-sum:
∑

ri

8 / 24

Centralized Resource Allocation

Cluster manager runs on a single server
Resource allocation state is centralized

Set of available servers, resources on each server, map of
applications to servers, ...
If a new application wants resources:

1 Find best allocation according to placement policy
2 Update local state (server resource map)
3 Allocate resources in form of containers/VMs..

All the advantages and drawbacks of a centralized approach
Used by Kubernetes, Slurm, OpenStack, VMWare,....

9 / 24

VM Overcommitment

Hypervisors can also overcommit resources allocated to VMs
VMs are “committed” C resources, but can only effectively use c,
where c < C.
VM’s “true” resource allocation effectively reduced
This process is called resource reclamation
Useful to “pack” more VMs onto a server

Overcommitment Types
Transparent: The guest OS/applications cannot “tell” that
resources have been reclaimed by the hypervisor.
Explicit: Guest OS has knowledge of the reclamation, and may
even cooperate in the overcommitment process.

10 / 24

CPU Overcommitment

Hypervisors schedule vCPUs to run (just like the OS schedules
processes)
Hypervisors can thus reduce a VMs CPU allocation by scheduling
its vCPUs less often
This is transparent. Guest OS/application have no direct way of
knowing, and do not need to be modified.
Explicit mechanism: vCPU hot-unplug
With hot-unplug, a vCPU can be “removed” from the VM.
Guest OS and applications see a reduction in total amount of
vCPUs available.

11 / 24

Memory Overcommitment

Transparent: Hypervisor swaps out the VM’s memory pages.
Explicit: Some amount of memory is hot unplugged.
Hot-unplugging of memory is...complicated
Guest OS must cooperate and find and return unused pages.
Another popular explicit reclamation technique is ballooning.

12 / 24

Memory Ballooning

Ballooning pre-dates hot-unplug, and was required when guest
OSes did not support hot-unplug.
Guest OS is installed with a balloon driver, which allocates large
amounts of memory
The memory requested by the balloon is given to the hypervisor, so
that it can allocate it to other VMs.

Reading
“Memory Resource Management in VMware ESX Server.” Carl A.
Waldspurger.

13 / 24

Transparent vs. Explicit Overcommitment Tradeoffs

Transparent techniques may hurt VM performance more
If Guest OS/application is notified about it being shrunk, it can make
better resource allocation decisions
Example: Most memory is used for disk caching (page cache)
Guest OS can discard some cached items when balloon expands
Hypervisor level Transparent Overcommitment is “blind” and may
move “wrong” pages to swap.

14 / 24

More memory Overcommitment

Main problem with overcommitment:
Overcommitment reduces VM performance!
Is there a way to overcommit without affecting VM
performance?

Overcommitment is not so bad!
In many cases, resources can be overcommited safely without
much performance penalty.
Mainly because reclaiming resources not used by the VM should
not affect performance
Luckily, most applications use a small fraction of VM resources
VMs are typically over-provisioned by customers

15 / 24

Application Performance With Overcommitment

Performance of application with overcommitment depends on
overprovisioning and application characteristics.
Usually, resources can be reclaimed to a large extent without the
proportional performance reduction
“Utility curves” have this typical shape:

0 20 40 60 80 100
Deflation %

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SpecJBB
Kcompile
Memcached
Spark-Kmeans

16 / 24

Memory Overcommitment with Page Deduplication

Many VMs run the same OS (Linux), libraries (glibc, python, . . .),
and software (apache, memcached, . . .)
Guest OS code, libraries, and application code occupies significant
amount of VM memory

Merge

Copy On Write

VM1 VM2

17 / 24

Page Deduplication

1 Hypervisor constantly scans and finds duplicate pages
2 Duplicate pages→ Exactly same content
3 Same libraries, application binaries, data, etc.
4 Duplicate pages are merged by Hypervisor
5 Merged page is marked copy-on-write for safety

18 / 24

More On Page Deduplication

Effective VM memory footprint reduced without actually reducing its
memory allocation
Completely transparent to VM, even wrt performance!

Downsides?
Timing side channels!
Attacker VM can find out what code version a victim VM is running
Generate “random” pages.
Write to them after a while
If write operation takes slightly more time, it is because the page
was marked copy-on-write, and the Hypervisor had to make a copy.
Also maybe steal encryption keys.

19 / 24

Cluster Load-balancing with Migration

Due to Overcommitment on a server or otherwise, VM may face
performance degradation
Key idea: Live-migrate VM to a less loaded server

Black and gray box overload detection
Black-box: Look at VM-level metrics that hypervisor can access
VM CPU utilization, I/O rate, etc.
Gray-box: Application and OS level metrics
Respose time, memory usage inside VM, etc.

Reference
“Black-box and Gray-box Strategies for Virtual Machine Migration”, T.
Wood et. al.

20 / 24

Virtualization for fault-tolerance

What if the server hosting a VM fails?!
Key idea: Primary-secondary replication
Run two identical VMs. If one fails, the other can seamlessly take
over

Remus
Checkpoint and migrate VM memory state to secondary server
Very frequent Checkpointing: every ∼ 100 milliseconds
Key trick: Buffer all outgoing network packets until memory is
synced

Reference
Remus . Warfield et. al.

21 / 24

VM-fork

Analgous to process fork
Want to clone a VM and launch it on another server
Both parent and child VMs continue running
Useful for increasing parallelism and horizontally scaling

SnowFlock
Copy memory state using post-copy migration
Child pages are copied on first access, over the network.
All parent VM pages are marked copy on write

Reference
SnowFlock

22 / 24

Record-replay

Useful for debugging
Record only non-deterministic events
Replay them at exactly the time they occured at.

23 / 24

Nested Virtualization

Run a VM inside a VM!
XenBlanket: PV VM inside a HVM VM
Hypercalls are proxied

24 / 24

