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Abstract. Cardiovascular disease (CVD) is one of the key causes for
death worldwide. We consider the problem of modeling an imaging biomarker,
Coronary Artery Calcification (CAC) measured by computed tomogra-
phy, based on behavioral data. We employ the formalism of Dynamic
Bayesian Network (DBN) and learn a DBN from these data. Our learned
DBN provides insights about the associations of specific risk factors with
CAC levels. Exhaustive empirical results demonstrate that the proposed
learning method yields reasonable performance during cross-validation.

1 Introduction

Cardiovascular disease (CVD) is one of the key causes of death worldwide. It is
well known that successful and established lifestyle intervention and modifica-
tion can result in prevention of the development of cardiovascular risk factors.
In this work-in-progress, we consider a clinical study, Coronary Artery Risk
Development in Young Adults (CARDIA), to model the development of Coro-
nary Artery Calcification (CAC) amounts, a measure of subclinical Coronary
Artery Disease [1]. For modeling this risk factor development in adults, we em-
ploy the use of temporal-probabilistic models called Dynamic Bayesian Networks
(DBNs) [3]. We employ standard optimization scoring metrics [3] – Bayesian
Information Criterion (BIC), Bayesian Dirichlet metric (BDe) and mutual in-
formation (MI) – for learning these temporal models. We combine the different
probabilistic networks resulting from different metrics and evaluate their predic-
tive ability through cross-validation.

One aspect of our work is that in order to learn these DBNs, we consider non-
clinical data. We use only basic socio-demographic information and health be-
haviour information for predicting the incidence of CAC-levels as the individual
ages from early to middle adult life. Our results indicate that these behavioral
features are reasonably predictive of the occurrence of increased CAC-levels.
They allow us to potentially identify potential life-style and behavioral changes
that can minimize cardiovascular risks. In addition, the interpretative nature of
the learned probabilistic model allows us to easily present the learned models to
domain experts (physicians) who could potentially interact with the model and
modify/refine the learned model based on their experience/expertise.

2 Background

One of the questions that the CARDIA study tries to address is to identify
the risk factors in early life that have influence on the development of clini-
cal CVD in later life. It is a longitudinal population study started in 1985-86



and performed in 4 study centers in the US and includes 7 subsequent eval-
uations (years 2, 5, 7, 10, 15, 20, 25). It includes various clinical and physical
measurements and in-depth questionnaires about sociodemographic background,
behavior, psychosocial issues, medical and family history, smoking, diet, exercise
and drinking habits. We consider the demographic and socio-economic features
to predict the CAC-level as a binary prediction task. Specifically, we consider
these features (with their number of categories in the following parentheses) –
participant’s education level(9), full time(3)/part time(3) work, occupation(8),
income(6), marriage status(8), number of children(3), alcohol usage(3), tobacco
usage(3) and physical activities(6) during the last year – to model the develop-
ment of CAC level (High(CAC > 0)/Low(CAC = 0)) in each year of study.1

3 Proposed Approach

The first issue with this study is that there are several missing values. Prepro-
cessing is required for matching the solutions for missing values across study
centers. While the participant retention rate is relatively high (91%, 86%, 81%,
79%, 74%, 72%, and 72%, respectively for each evaluation), there are still at
least 10 percent of the data are missing from the records. When a subject is
absent from a certain subsequent test, we fill in the missing values using the
values from his/her previous measurement. For the missing entries due to other
unknown reasons, we treat them as a special class.

Another issue is the evolution of the evaluation measurements and the survey
design. Some of the questions related to a certain aspect of the sociodemographic
background may be divided into multiple questions or combined into one ques-
tion in the follow up evaluations. For example, since year 15, the question related
to the participant’s marriage status has an option as “living with someone in a
marriage-like relationship” which is a separate question from year 0 to year 10.

Given these challenges, we employed a purely probabilistic formalism of dy-
namic Bayesian networks (DBNs) that extend Bayesian networks (BNs) to tem-
poral setting. They employ a factorized representation that decreases the dimen-
sion from exponential in the total number of features to exponential in the sizes
of parent sets. They also handle the longitudinal data by using a BN fragment
to represent the probabilistic transition between adjacent time slots which al-
lows both intra-time-slice and inter-time-slice arcs. Finally, cyclic dependencies
in time are allowed. For instance, treatment of a disease in the current time can
influence the incidence of the disease in the next time which in turn can influence
the treatment in the next time step.

In most literature, the probabilistic influence relationships of the DBN (par-
ticularly the temporal influences) are pre-specified and only the parameters are
learned. However, since we are interested in determining how the CAC-levels
evolve as a function of 10 other risk factors, we instead learn the influences
by adapting standard BN structure learning algorithms. The most popular ap-
proaches for learning BNs are to employ a greedy local search such as hill climb-

1 For detailed information about the features, please refer to CARDIA online resource
at http://www.cardia.dopm.uab.edu/exam-materials2/data-collection-forms.



ing based on certain decomposable local score functions. We consider three dif-
ferent scoring functions – Bayesian Dirichlet (BDe) scores, Bayesian information
criterion (BIC) and Mutual Information Test (MIT).Before discussing the scor-
ing functions, we present the high-level overview of our framework in Figure.1.
After preprocessing, we run three hill-climbing algorithms using the three dif-

Fig. 1: Flow Chart of the Proposed Model. The blue arrows denote the flow of data
and the grey arrows denote the flow of the model.

ferent scoring metrics. First, we transfer the multi-series dynamic data into a
training set by extracting every pair of sequential study measurements of ev-
ery patient as a training instance. After this step, we got 5114 (|subjects|) ∗5
(|paired time slices|) instances in total. Using these training instances, we learn
three models using the three metrics. We also combine these models by using
the union of all the edges to construct a new unified model2. The goal is to
introduce more dependencies and evaluate if a more complex model is indeed
more accurate. For this new unified model, we learn the parameters and perform
5-fold cross-validation for evaluation.

Returning to the scoring function, the first row of Table.1 presents the general
form of the decomposable penalized log-likelihood (DPLL) [4] for a BN B given
the data D. Dil is the instantiation of Xi in data point Dl , and PAil is the
instantiation of Xi’s parent nodes in Dl. So the general form of DPLL is the sum
of individual variable scores which equal to the loglikelihood of the data given the
local structure minus a penalty term for the local structure. Note that BIC and
BDe mainly differ in the penalty term. The penalty term for BIC is presented in
the second row where qi is the number of possible values of PAi, ri is the number
of possible values for Xi and N is number of examples (5114×5). Hence the BIC
penalty is linear in the number of independent parameters and logarthmic in the
number of instances. BDe penalty is presented in third row where Dijk is the
number of times Xi = k and PAi = j in D, and αij =

∑
k αijk with αijk = α

qiri
in order to assign equal scores to different Bayesian network structures that
encode the same independence assumptions. Ignoring the details, the key is that
the complexity of BIC score is independent of the data distribution, and only
depend on the arity of random variables and the arcs among them while the BDe
score is dependent on the data and controlled by the hyperparameters αijk. For

2 When the combination induces intra-slice cycles, we randomly remove one edge.



more details, we refer to [3]. Instead of calculating the log-likelihood, MIT score
(Table.1 last row) uses mutual information to evaluate the goodness-of-fit [5].
I(Xi, PAi) is the mutual information between Xi and its parents. χα,liσi(j) is chi-
square distribution at significance level 1− α. We refer to [5] for more details.

Table 1: The different scoring functions.

DPLL(B,D)
DPLL(B,D) =

∑n
i [
∑N
l logP (Dil|PAil)− Penalty(Xi,B,D)]

PenaltyBIC(Xi,B,D) = qi(ri−1)
2

logN

PenaltyBDe(Xi,B,D) =
∑qi
j

∑ri
k log

P (Dijk|Dij)
P (Dijk|Dij ,αij)

DPMI(B,D) SMIT (B,D) =
∑
i,PAi 6=∅ 2N ∗ I(Xi, PAi)−

∑
i,PAi 6=∅

∑qi
j χα,liσi(j)

4 Experiments

For the DBN DPLL-structure learning, we extended the BDAGL package of
Murphy et al. [2] to allow learning from multi-series dynamic data and to
support learning with BIC score function. We also adapted DPMI-structure
learning by exploiting the GlobalMIT package which was used to model multi-
series data from gene expression [5]. The learned DBN structure is shown in

Fig. 2: Combined DBN model. The blue arcs are learned by

DPLL-BDe; reds by DPLL-BIC; greens by DPMI; black

dash lines are self-links are learned by all three.

Figure.2. Note that
all three score met-
rics learned the self-
link for every vari-
able. This shows that
many socio-demographic
factors are influenced
by previous behav-
ior(5 years backward).
Observe that both
BIC and BDe learned
the inter-slice depen-
dency between “Smoke”
and “CAC” level. Both
BIC and MI returned
a temporal correla-
tion between “Exer-
cise” and “CAC”, which
indicates that previ-

ous health behaviors have strong influence on the risk of CAC in current time.
Then we combined the structure from the different learning approaches into a

comprehensive model for learning parameters. We applied this DBN to test data
and predict the CAC score based on the variables in the current and previous
time steps. As CAC score from previous time-steps is highly predictive of future
values, we hid the CAC-scores in the test set for fair evaluation.

We calculated the accuracy, AUC-ROC as well as F measure3 to evaluate the
independent and mixed models learned by different score functions. The results

3 Accuracy = (TP+TN)/(P+N); F = 2TP/(2TP+FP+FN)



are shown in Table.2. As the table shows, the model learned by BDe score has
the best performance while the MI the worst. We also performed t-test on the
five folds results, which shows the BDe is significantly better than MI with P-
values at 0.0014(AUC), 0.0247(Accuracy) and 5.7784×10−6(F). In order to rule
out the possibility that the better performance of BDe is resulted from the non-
temporal information which MI does not have, we also experimented on BNs with
intra-slice arcs only as well as DBNs with inter-slice arcs only. And the results
showed that the difference between them is not statistically significant at 5%
significance level, in other word, the temporal information is as important as the
non-temporal information in predicting the CAC level. Compared to BDe alone,
the combined model has deteriorated performance. This is probably because
the combined model has more arcs which exponentially increases the parameter
space and the limited amount of training data cannot guarantee the accurate
training for such high dimension model (possibly overfitting).

Table 2: Model Evaluation Results.
MI BIC BDe MI+BIC MI+BDe BIC+BDe MI+BIC+BDe Inter-s Intra-s

Accuracy 0.5774 0.6558 0.6805 0.6482 0.6715 0.6701 0.6600 0.5774 0.5853
AUC-ROC 0.4870 0.6979 0.7139 0.6473 0.6809 0.7092 0.6581 0.6013 0.6489
F measure 0 0.5417 0.6144 0.4640 0.5632 0.5880 0.5244 0.0005 0.0501

Future Work: While our work generatively models all the variables across
the different years, extending this work to predict CAC-levels discriminatively
remains an interesting direction. Considering more risk factors and more sophis-
ticated algorithms which allows learning temporal influence jumping through
multiple time slices is another direction. The end goal is the development of
interventions that can reduce the risk of CVDs in young adults.
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