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ABSTRACT 
Gaze interaction provides an efficient way for users to 
communicate and control in virtual reality (VR) presented 
by head-mounted displays. In gaze-based text-entry systems, 
eye tracking and brain-computer interface (BCI) are the two 
most commonly used approaches. This paper presents a 
hybrid BCI system for text entry in VR by combining 
steady-state visual evoked potentials (SSVEP) and eye 
tracking. The user interface in VR designed a 40-target 
virtual keyboard using a joint frequency-phase modulation 
method for SSVEP. Eye position was measured by an eye-
tracking accessory in the VR headset. Target-related gaze 
direction was detected by combining simultaneously 
recorded SSVEP and eye position data. Offline and online 
experiments indicate that the proposed system can type at a 
speed around 10 words per minute, leading to an 
information transfer rate (ITR) of 270 bits per minute. The 
results further demonstrate the superiority of the hybrid 
method over single-modality methods for VR applications. 
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INTRODUCTION 
Gaze interaction is one of the most common ways for 
people with motor disabilities to navigate and control their 
computer with their eyes [18]. Gaze interaction only 
requires the movement of the eyes without any need for 
other additional muscle control, which makes it a perfect 
solution for those with disabilities such as spinal cord injury 
(SCI), repetitive strain injury (RSI), and amyotrophic lateral 

sclerosis (ALS) to communicate with their environments. 
Gaze interaction approaches including eye tracking, 
electrooculogram (EOG), and brain-computer interface 
(BCI) have been widely used in augmentative and 
alternative communication (AAC) systems [5]. 

Eye tracking is the predominant method used for gaze 
interaction nowadays. Eye-tracking devices detect eye 
positions by processing visible light or infrared images of 
the eyes captured by a camera. Towards different 
applications, desktop-mounted and head-mounted eye 
trackers have been developed by eye-tracking companies 
such as Tobii [19]. Eye tracking based text entry techniques 
have been well established and an eye typing system can be 
implemented by combining an eye tracker with a virtual 
keyboard interface on the computer screen [10]. In general, 
eye tracking based typing speed ranges from 5-10 words per 
minute (wpm) [11]. Although high-performance eye 
trackers can detect eye movements with high accuracy and 
precision, current applications of eye tracking are still 
limited because the system is always expensive and the 
tracking performance is sensitive to environmental factors 
such as light condition. 

BCIs provide a very promising technique for interaction 
with computers by establishing a direct link between human 
brain and computer [20]. Using frequency or time domain 
coding methods, gaze detection can be realized by visual 
BCIs based on visual evoked potentials (VEPs) and P300 
potentials recorded by scalp electroencephalogram (EEG) 
[4]. In BCI based text-entry systems, steady-state visual 
evoked potentials (SSVEP) have shown high performance 
and usability. For example, Chen et al. [2] developed an 
SSVEP-based BCI speller with a typing speed around 10 
wpm, which was comparable to the eye-tracking approach. 
Furthermore, combining BCIs with other assistive 
technologies have received increasing attention in recent 
years [12]. A hybrid BCI system that combines a traditional 
BCI with other physiological signals has shown great 
advantages in BCI performance and system flexibility [16, 
13]. For example, eye tracking and BCI methods have been 
combined to develop hybrid BCIs [8, 9]. 

Recently, with the proliferation of virtual reality (VR) 
headsets such as HTC Vive and Oculus Rift, human-
computer interface design in VR opens a new frontier, as 
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the traditional mouse-keyboard configuration is no longer 
the best interaction method inside VR environments. HTC 
Vive [15] uses active motion-tracked handheld controllers 
with input buttons and triggers to interact with the 
environment, which is reliable but not intuitive and may 
cause fatigue. Alternatively, gaze input provides an efficient 
way for interaction in VR applications because of its 
intuitive and immersive style. On one hand, eye-tracking 
accessories in VR head-mounted displays (VRHMD) have 
been proposed and developed [17]. On the other hand, gaze 
control has been realized in recent VR-based BCI studies 
[6]. Technically, for applications such as text entry in 
VRHMDs, eye tracking and BCI methods can be easily 
combined towards improved accuracy and precision. 
However, to our knowledge, gaze-based text entry in 
consumer VR headsets has not been reported yet.  

In this paper, we designed and implemented a hybrid gaze-
based text-entry system in VR for high-speed typing. The 
system combined an SSVEP-based BCI with a low-cost 
eye-tracking module in VRHMD. With a virtual keyboard, 
gaze direction was detected by combining simultaneously 
recorded SSVEP and eye position data. To evaluate system 
performance, this study designed offline and online 
experiments to simulate text entry tasks. In addition, 
classification results corresponding to the hybrid method 
and the single-modality methods were estimated separately 
for comparison. The contributions of this paper include: a) a 
viable solution for robust and intuitive high-speed gaze 
interaction in VR, b) a hybrid method to combine SSVEP 
BCIs and low-cost eye-tracking devices, and c) a general 
experimental platform for VR-based BCI research [7, 1]. 

METHODS 

System Design 
This study designed a hybrid gaze-based text-entry system 
using an HTC Vive VR platform. Figure 1 shows the system 
architecture with closed-loop data flow. EEG data were 
acquired using a Synamps2 system from Neuroscan 
(https://compumedicsneuroscan.com/). Eye positions were 
measured with an embedded infrared eye-tracking module: 
aGlass DKI from 7invensun (https://www.7invensun.com). 
All software programs ran on a computer (with an Intel core 
i7 processor and an NVIDIA GTX1080 graphic card) 
supporting the HTC Vive platform. The VRHMD used two 
screens (one per eye) and each screen had a resolution of 
1080×1200 pixels. The text-entry software was written in 
C# in Unity 3D engine and SteamVR platform, which 
rendered 3D scene inside HMD to give the user an 
immersive 3D perception at a 90Hz refresh rate. The 
software included programs for stimulus presentation, data 
communication, data analysis, and feedback presentation. 
Eye position data were collected using aGlass SDK in real 
time. A separate computer was used to record and transfer 
real-time EEG data to the VR computer through TCP/IP. 
Event triggers (i.e., stimulus onset) from the VR computer 
were sent to the EEG system through a parallel port for 
synchronizing event and EEG data.  

As shown in Figure 2, the stimulus program adopted a 40-
target virtual keyboard designed for an SSVEP BCI speller 
[2], which was a 5×8 matrix containing 40 characters (26 
English alphabet letters, 10 digits, and 4 other symbols). For 
multi-target SSVEP coding, 40 characters were tagged 
differently using a joint frequency-phase modulation (JFPM) 
method (frequency range: 8-15.8Hz with an interval of 
0.2Hz, phase interval between two adjacent frequencies: 
0.35π) [2]. As shown in Figure 2, the width and height of 
each character were 4.4°  and the horizontal and vertical 
distances between two neighbors were 1.0 ° . The virtual 
keyboard seen in VRHMD corresponded to the actual 
situation where a person sat at a distance of 60cm in front of 
a 22-inch computer monitor.  

For data communication, EEG data and eye-tracking data 
were received and recorded separately by the stimulus 
program. For offline analysis, data files were saved for 
further analysis using Matlab (Mathworks, Inc.). For online 
analysis, an online data processing program was developed 
in an Anaconda Python environment. EEG data transferred 
by TCP/IP were directly thrown into the online processing 
program. Eye-tracking data were saved to files by the 
stimulus program, and loaded automatically into the online 
processing program. The online processing program further 

 
Figure 1. Diagram of the hybrid text entry system. EEG and 
eye position data are measured and processed simultaneously 

to detect gaze direction for text entry in VRHMD. 

 
Figure 2. Layout of the virtual keyboard in VR.  
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performed a hybrid data fusion algorithm for target 
identification, and returned the results to the stimulus 
program for feedback presentation.  
Experiment Design 
Eleven healthy subjects (2 females and 9 males, aged 19-29 
years) with normal or corrected to normal vision 
participated in the experiment. The subject first wore EEG 
cap and then fixed the HMD as shown in Figure 1. Nine 
electrodes over the parietal and occipital areas (Pz, PO5, 
PO3, POz, PO4, PO6, O1, Oz, O2) were used to record 
SSVEPs at a sampling rate of 1000Hz. Eye position data 
were recorded by the eye-tracking module with a monocular 
(right eye) mode at a sampling rate of 120Hz. For each 
subject, eye tracking was calibrated through pupil alignment 
and a 9-points calibration procedure. 

This study designed separate offline and online experiments 
to evaluate system performance using a cue-guided target 
selection task [2]. All subjects took part in the offline 
experiment, and two of them (S1 and S5) joined in the 
online experiment on a different day. In the offline 
experiment, all participants were asked to accomplish eight 
blocks of target selection. In each block, all 40 characters 
were cued sequentially in a random order. Each trial lasted 
1.8 seconds in total. At the beginning of each trial, a red 
square appeared as the target cue for 0.8 seconds. Subjects 
were asked to direct their gaze to the target as soon as 
possible. After the cue, all stimuli started to flicker for 1 
second. Subjects were asked to avoid blinks during 
stimulation. EEG and eye-tracking data were saved for 
offline analysis. In the online experiment, stimulation 
duration was reduced to 0.3 seconds towards high 
information transfer rates (ITRs) [14]. After an 8-blocks 
training procedure, the subjects performed an online 4-
blocks test with algorithms trained from the training data. A 
blue square at the target location flashed for 0.2 seconds as 
feedback after online data analysis. 
EEG Data Analysis 
Data epochs for the nine-channel SSVEP signals were 
extracted according to event triggers generated by the 
stimulus program and then down-sampled to 250Hz. A filter 
bank method [3] with the frequency range of 8-88Hz was 
used to decompose SSVEP signals into seven sub-band 
components to cover multiple harmonics of SSVEPs.  

For SSVEP detection, this study employed the task-related 
component analysis (TRCA) algorithm [14] to design 
spatial filters for SSVEP, and then implemented a template-
matching based target identification method. After spatial 
filtering, the correlation coefficient between the projections 
of single-trial test data 𝑿𝑿 and an individual template 𝑿𝑿�𝒌𝒌 for 
the k-th visual stimulus was calculated as: 

𝜌𝜌𝑘𝑘 = 𝜌𝜌(𝑿𝑿𝑇𝑇𝑾𝑾,𝑿𝑿�𝑘𝑘𝑇𝑇𝑾𝑾) 

where 𝑾𝑾 consisted of spatial filters corresponding to all 𝑁𝑁𝑓𝑓 
stimulus frequencies: 

𝑾𝑾 = �𝒘𝒘1 𝒘𝒘2  … 𝒘𝒘𝑁𝑁𝑓𝑓�.                       

The stimulus frequency with the maximal correlation 
coefficient was selected as the target frequency. For each 
trial, the correlation coefficient vector was used for data 
fusion with eye-tracking data. 

Eye Tracking Data Analysis 
Eye positions were tracked in combination with head 
attitude measured by the HMD. A 9-points calibration was 
performed to map the gaze points onto the 2D keyboard 
plane within a normalized coordinate system. The whole 
virtual keyboard was visible and trackable in the coordinate 
system. Eye tracking analysis was performed by two 
methods. The first method was based on the prediction of 
coordinate values according to calibration. The mean 
coordinates of the gaze point from a certain period after the 
visual cue was used to calculate Euclidean distance to all 40 
characters. The character with the minimal distance was 
chosen as the target. The second method was a template-
matching method in which the gaze point was estimated by 
comparing with the training data. The template coordinates 
for 40 eye-gaze points corresponding to the 40 characters 
were calculated by averaging across all training trials. The 
distances between the test gaze point and the template 
coordinates were calculated. The character with the minimal 
distance was then selected as the target.  

In addition to target detection, this study also evaluated 
accuracy and precision of the eye-tracking module [18]. 
Across eight trials for each character, eye-tracking points of 
each trial were averaged, and then the tracking accuracy and 
precision were calculated for each character.  
Hybrid Data Fusion 
To combine information from SSVEP and eye tracking, a 
hybrid data fusion method was developed to enhance target 
detection. The hybrid decision model was defined as: 

𝑅𝑅ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸2 +
1

𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸
× 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸2  

where 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸  was the correlation coefficients between 
SSVEP and individual templates, 𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸  was the distances 
between gaze coordinates and trained templates, 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 
and 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸  were the weights obtained by calculating the 
averaged classification accuracy of the EEG and eye-
tracking methods. Both 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸  and 1

𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸
 were normalized to 

zero mean and unit variance. To estimate 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸  and 
𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸, leave-one-out cross-validation was performed with 
the training data to calculate the averaged classification 
accuracy corresponding to EEG and eye tracking separately. 
The hybrid method chose the k-th character with the 
maximal 𝑅𝑅𝑘𝑘 as the target character.  

RESULTS AND DISCUSSION 

Performance of SSVEP BCI 
This study employed the TRCA-based method to detect 
SSVEP.  The offline classification accuracy and ITR (in bits 
per minute, bpm) [20] were estimated using a leave-one-out 
cross-validation method. Table 1 lists the classification 
accuracy and ITR with a data length of 0.3 seconds. The 
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averaged accuracy across all subjects is 82±15%, while the 
averaged ITR is 210 ± 60bpm. Figure 3 illustrates the 
classification results using different data lengths. The 
accuracy increases when data length increases. After around 
0.3 seconds, the accuracy for EEG becomes comparable to 
the eye-tracking method. ITR peaks around 0.35 seconds. 
These results are consistent with previous studies using 
LCD monitors as stimulus platforms [2, 14], demonstrating 
the efficiency of SSVEP BCIs in VR environments.  

Performance of Eye Tracking 
This study calculates two types of accuracy for the eye 
tracking system. As shown in Table 1, the eye-calibrated 
method obtained averaged accuracy of 62±14%. The low 
classification accuracy was caused by the relatively low 
tracking accuracy of the low-cost eye-tracking module. The 
supervised eye-template method achieved significantly 
higher classification accuracy of 88±8%. The tracking 
accuracy for the experiment setting in this study was 
roughly estimated as 3.1±2.7 degrees and the tracking 
precision was 1.8±1.5 degrees. The tracking precision was 
higher for targets with small viewing angles (i.e., central 
areas in the keyboard). As shown in Figure 3, eye tracking 
could reach stable classification accuracy within a very 
short time window around 50ms. Different from SSVEP, 
longer data length doesn’t improve the classification 
accuracy for eye tracking. This is due to the fact that 
accuracy and precision of eye tracking is time invariant. 
Performance of the Hybrid System 
The hybrid method achieved higher performance than the 
single-modality methods. As shown in Table 1, the averaged 
classification accuracy is 96±2% and the ITR is 270±12bpm. 
One-way repeated-measures analysis of variance (ANOVA) 
shows that there is significant difference of accuracy 
between the four different methods (F(3, 43)=16.45, p<10-5). 
Bonferroni corrected post-hoc pairwise comparisons using 
paired t-tests indicate the improvements of accuracy for the 
hybrid method are significant (vs. eye-calibrated: p<10-5, vs. 
eye-template: p<0.05, vs. EEG-template: p<0.05). As shown 

in Figure 3, the hybrid method showed very consistent 
improvements of accuracy and ITRs at all data lengths 
compared with the single-modality methods. Furthermore, 
the hybrid accuracy is significantly higher than the method 
in which the single modality with higher performance was 
chosen for each subject (96% vs. 93%, p<0.01).  
Online Validation 
Two subjects (S1, S5) participated in the online experiment. 
The online processing program took about 16ms to 
implement the hybrid algorithm. For S1, accuracies for EEG 
and eye tracking were 88% and 93% respectively, and the 
hybrid method achieved accuracy of 97%. For S5, 
accuracies for EEG, eye tracking, and the hybrid method 
were 89%, 92%, and 98%. Hybrid classification results in 
the online test were consistent to those in the offline 
analysis (S1: 97%, S5: 96%), which proved the feasibility of 
the proposed method for online applications. 
CONCLUSION 
This study presents a hybrid BCI for high-speed text entry 
in VRHMD by combining SSVEP and eye tracking. A 40-
target virtual keyboard was designed for eliciting SSVEPs 
and tracking gaze at the same time. A hybrid decision model 
was proposed for gaze detection. With a cue-guided target 
selection task, both offline and online experiments indicate 
that the proposed system can input text at a speed around 
10wpm (1.1s per character), leading to an averaged ITR of 
270bpm, which is comparable to the highest ITR reported in 
BCI studies [2]. The results also demonstrate the superiority 
of the hybrid method over the single-modality methods. 
Future work will focus on improvement of eye tracking and 
data fusion methods, as well as the implementation of real 
text-entry applications in VR environments. 
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Subject Eye-
calibrated 

Eye-
template 

EEG-
template Hybrid 

Metrics Acc ITR Acc ITR Acc ITR Acc ITR 
S1 60 123 80 194 89 234 97 272 
S2 65 140 92 247 43 72 95 261 
S3 47 84 71 160 96 268 95 263 
S4 77 182 98 277 99 287 99 287 
S5 50 94 87 225 90 235 96 270 
S6 49 90 84 211 70 156 91 243 
S7 80 194 99 283 70 157 99 287 
S8 80 196 97 273 85 217 99 285 
S9 35 51 91 244 75 176 95 260 
S10 66 144 83 208 97 272 97 272 
S11 70 156 87 224 89 233 96 266 
Mean 62 132 88 232 82 210 96 270 
Std 14 46 8 36 15 60 2 12 

Table 1. Accuracy (%) and ITRs (bpm) for all subjects using 
a data length of 0.3 seconds. Results for the eye tracking, 
EEG, and hybrid methods were calculated separately for 

comparison. Values in bold indicate the best accuracy. 

 

 
Figure 3. Classification accuracy and ITRs using different 
data lengths (from 50ms to 1000ms with a step of 50ms). 

The error bars represent standard errors. 
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