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Abstract—Field-Programmable Gate Arrays (FPGAs) are used
almost everywhere, from smart-phones to datacenters. FPGA
functionality is determined by the intellectual property (IP)
encoded within a vendor-proprietary binary configuration file, or
bitstream, that is deployed on these devices. The potential value
offered by IP creates many incentives for an adversary to attempt
to steal it. The opaque nature of vendor bitstream formats has
thus far limited the ability to detect stolen IP in deployed FPGAs.
In this work we demonstrate the ability to detect instances of
IP piracy given ONLY the FPGA configuration bitstream and a
golden user netlist.

While prior works have shown it is possible to reverse-
engineer FPGA bitstreams into an underlying structural netlist,
in isolation this netlist is of limited utility. We take this a step
further by introducing ReCon, a tool to automatically assist in
detecting pirated IP within a bitstream. ReCon first extracts
a netlist from an unknown bitstream, then applies subgraph
isomorphism algorithms to detect IP within the extracted netlist
that are pirated from an original, or user, IP. Our experiments
demonstrate ReCon as an effective method for piracy detection
because it allows for a composite comparison between two
bitstreams without needing to manually reverse engineer circuits
and identify submodules.

I. INTRODUCTION

The flexibility of Field-Programmable Gate Array (FPGA)
devices as reprogrammable hardware makes them an attractive
option for many commercial applications such as cars, smart-
phones [1], and datacenters [2]. The ability to target FPGAs
as modular hardware has helped a robust Intellectual Property
(IP) licensing market develop around this class of device. The
value of IP on modern FPGAs makes it a tempting target for
piracy. In this paper we define FPGA IP piracy, or simply
piracy, as attempting to extract IP from FPGAs with the goal
of circumventing existing property protection laws.

A bitstream is a binary configuration file that is loaded
into FPGA memory and includes the encoding the architecture
needs to realize a user design. In most commercially available
FPGAs, the bitstream format is highly opaque to users, and
is often a closely-guarded vendor-proprietary secret [3]. Thus
reverse-engineering the bitstream entails the ability to extract
IP directly from FPGA bitstreams.

A traditional technique for detecting IP piracy is watermark-
ing. This anti-piracy technique involves adding extra logic or
traits in the netlist or register transfer level (RTL) code of an
FPGA design to embed a unique feature in the IP that can be
detected during later analysis [4]. However, the overhead of
needing to add watermarking features bloats design complexity

Fig. 1: ReCon compares a user netlist with a structural netlist
reverse-engineered from an unknown bitstream to perform IP piracy
detection.

and can be potentially analyzed and overcome by malicious
actors.

We present an IP piracy detection algorithm, ReCon, which
can detect IP piracy given only access to an FPGA bitstream
or configuration memory as well as the original IP. ReCon
works by first extracting a structural netlist from an unknown
bitstream, and then applying a two-step subgraph isomorphism
algorithm to determine the likelihood that IP piracy/theft has
occurred (Fig.1).

This work makes the following contributions:
• We show it is possible to detect user IP in an unknown

bitstream given only a target bitstream and the original
user netlist.

• We demonstrate that by exploiting the regularity of the
FPGA fabric we can apply subgraph isomorphism tech-
niques to perform piracy detection without relying on ad-
ditive watermarks or manual circuit reverse engineering.

II. BACKGROUND

Modern FPGAs have introduced multiple mechanisms for
mitigating piracy such as on-chip encryption/decryption en-
gines [5], options to disable configuration readback [6], and
authentication schemes [3]. However, these integrated FPGA
security features have repeatedly proven susceptible to physi-
cal attacks [7][8][9]. Software-based features such as bitstream
file encryption and authentication schemes are susceptible to
key extraction [10] and other attacks [11] [12] thus cryp-
tography cannot be relied on as the sole mechanism for
mitigating theft



1) Reverse Engineering: Researchers have explored
reverse-engineering bitstreams back to a netlist for well over
the past decade [13][14][15]. However, it has not been until
the past few years that techniques for easily manipulating
[16] and reverse engineering complex bitstreams such as in
modern Xilinx devices have been published [17][18]. New
strategies for detecting tampered or stolen IP must incorporate
advancements in FPGA reverse-engineering techniques to keep
pace with the increasing sophistication of reverse engineering
tools.

2) Watermarking: Watermarking is a common defensive
technique to assist in determining authenticity of IP. Water-
marking techniques add identifying features that do not impact
the functionality of the design. There are three commonly-
used watermarking approaches: RTL-based, netlist-based, and
bitstream-based - unfortunately, all add overhead, and can fail
in the face of reverse-engineering-based piracy.

RTL-based watermarking, such as work demonstrated by
Cui et al.[19], are only practical when the designer has access
to the pirated RTL. Thus, this type of watermarking is unable
to detect IP piracy when the design is only available as a
bitstream.

Netlist-based watermarks attempt to embed watermarking
logic such that the output of the watermark is a function
of the underlying design [20][21]. While detecting a netlist
watermark is strong evidence of piracy, the lack thereof does
not prove originality. Reverse-engineering configuration to
defeat this type of verification has been demonstrated in recent
FPGA tampering attacks [22] and is prone to reversal with
simple bitstream analysis tools.

Bitstream watermarking techniques that add or change con-
figuration encoding are attractive because the unique features
of the watermark are easily detected via static analysis [23].
The same tooling and techniques used to implement and
verify this class of watermark, however, can be also be used
to circumvent this defense and hide evidence of piracy. For
this reason, piracy detection strategies must incorporate the
full information as described by the bitstream rather than
narrowing analysis to a handful of potential traits expressed
in the binary.

III. THREAT MODEL

In our threat model we assume an attacker may illicitly
acquire IP in netlist form through a number of methods.
For example, the encryption keys for proprietary IP may be
compromised, an employee or affiliate may illicitly steal or
send netlist IP for monetary gain [24], or the bitstream of a
design may be decrypted and reverse-engineered into a netlist
[17].

Our threat model also assumes that we, as analysts, are
able to obtain the decrypted bitstream of a potentially pirated
design. If a bitstream is encrypted we assume we can decrypt
it by applying previously published techniques for physically
extracting encryption keys from the device, such as thermo-
laser stimulation [10]. We also assume that the analyst has
access to the original user IP and this IP is distributed as a

netlist - not as RTL code. Companies such as Xilinx and other
3rd party suppliers distribute their commercial IP products
as fixed encrypted netlists [25]. Similar to related work on
reversing-engineering digital circuits [26], we also assume an
analyst has access to public “datasheet” knowledge of the
device being analyzed.

IV. PIRACY DETECTION: OBFUSCATION AND
CHALLENGES

Detecting piracy through pure binary file analysis is diffi-
cult. First, even small changes in the design flow can introduce
major changes in how the resulting bitstream is encoded. Sec-
ond, a sophisticated attacker might also make small changes to
the spacial layout of the pirated IP in the FPGA to deliberately
change the binary footprint of the bitstream. Therefore, the
goal of our ReCon technique attempts to move beyond pure
binary analysis of the bitstream file itself.

Our tool must also detect piracy despite obfuscation from
netlist tampering. A number of netlist tampering techniques
exist for obscuring pirated IP. For example changing Look-
Up-Table (LUT) encodings and LUT input pins within a stolen
netlist, stuffing unused or unimportant areas of LUT contents
with garbage encoding, malicious place and route changes, and
adding dummy circuitry or resources into the design. As long
as the functional integrity of the IP persists in an unknown
bitstream we can determine with confidence whether or not
user IP is present in spite of adversarial changes to the netlist.

V. RECON IP PIRACY DETECTION

We introduce ReCon, an algorithm that can detect pirated
IP inside of an unknown bitstream without relying on manual
circuit reversal. ReCon first parses the unknown bitstream into
the underlying structural netlist. Next, ReCon uses recursive
subgraph isomorphism techniques to compare the unknown
netlist to a user IP to identify local similarities between the
two. Finally, ReCon returns a threshold value of functional
similarity between the two.

ReCon is meant to expedite IP piracy detection in FPGAs
and simplify black-box analysis of unknown bitstreams. Our
technique diverges from other digital circuit reverse engineer-
ing strategies in two distinct ways. First, by focusing our
algorithm on FPGAs we can exploit the regularity of the
architecture to perform composite analysis. And second, our
technique is a fully automated process that does not rely on
manual or incremental analysis to determine the likelihood of
piracy.

Without ReCon an analyst would need to manually follow
a netlist to identify potential elements of user IP, and then
also separate the user IP from the larger design to confirm its
presence. Current techniques for accomplishing this analysis in
a non-trivial design can be a challenging and time-consuming
task. With ReCon we can algorithmically perform this analysis
and accurately identify the existence user IP.
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Fig. 2: Overview of ReCon algorithm. Left to Right: A) Gather logic and fanout metadata. B) Match resources in both netlists based on
fanout contents. C) For each matching substructure, traverse downhill resources. D) During traversal, compute similarity of potential matching
substructures. E) Verify if substructure is found in the user IP, and if applicable, fits with any previously processed structures. Repeat this
process for all potential structural matches found in step B.

A. Phase 0: Bitstream Reverse Engineering
We employ bitstream reverse engineering strategies elab-

orated by Zhang et all. [17] to take an unknown bitstream
and transform it back into an unknown netlist. The reverse-
engineering process only requires access to ‘datasheet level’
knowledge of the part to accurately reverse a design. The
unknown netlist produced by this reverse engineering de-
scribes connectivity between in-fabric architecture primitives
such as Look-Up-Tables (LUTS), Flip-Flops (FFs), Muxes,
I/O, Clocks, Block-RAM (BRAM), etc.

After reverse-engineering a bitstream back into a netlist,
it can be treated as a graph. Each node in a netlist graph
corresponds to a resource element in the fabric, such as a
LUT or Flip Flop. Edges in a netlist graph represent signals
that connect logic resource elements. We use the relationships
between resource nodes and their corresponding fanout edges
to identify similarities between the unknown design and the
user IP.

B. Phase I: Group Fanouts & Identify Clocks
1) Fanout Analysis: After reverse-engineering the bit-

stream, ReCon identifies high-fanout logic elements within
the unknown netlist and attempts to correlate these elements
with corresponding high-fanout elements within the user IP.
At the conclusion of this phase, we have a tractable number
of potential matching sub-graphs in the netlist we can further
process to determine likeness.

FPGA netlists are constrained by the types of logic re-
sources available in the architecture. This regularity can ex-
ploited to more easily discern matching functionality between
two designs and perform analysis. Typical digital logic circuits
contain a small number of high-fanout nets, e.g. clock, reset,
and enable signals.

ReCon starts by identifying resources between the user
netlist and the extracted unknown design that share similar
degrees of fanout connections [Fig.2A]. Resources with a high
degree of children are more likely to contain detailed features

that can be compared between the two designs. Both the
number of fanout connections and the type of resources they
fan out to are considered during this phase. Grouping resources
by these features narrows the search space for graph traversal
in the next phase [Fig.2B].

2) Clock Analysis: Sequential designs that use separate
clock domains or implement circuits that drive the clock to
sub-resources can be identified within a reverse engineered
bitstream. Using the target bitstream, we follow the global
clock signals as they spread through the fabric and separate
nets that rely on different signals for clocking. If two or more
clock signals are present in the netlist then the resources can be
separated into sub-graphs based on the driving clock signal We
can traverse the connections of these resources to discriminate
the clock domain of downhill resources.

Each clock-based resource group found in the unknown
netlist can be compared to the user netlist by analyzing the
sequence of connections and children found in each group in
the user and unknown netlist. Groups with resources that drive
the same number and types of downhill nodes are considered
’positive’ matches that we should continue to traverse their
children to further develop the extent of the match.

C. Phase II: Traversal and Comparison
Logic resources gathered from each netlist graph are indi-

vidually compared based on their fanout connections. While
resource placement may differ between two bitstreams, the
functional behavior of the netlists will match if the user IP is
the same or a subset of an unknown design.

Fanout signals for each resource are traversed to identify
the type and number of logic resources that have inputs driven
by a common signal [Fig.2C]. Because structural netlists are
less affected by optimizations made in the design flow than
RTL, similar groups of resources can be observed in both
netlists if subsections of the two are derived from the same
source. To match resources during traversal, resources are
compared in each design based on the type of resource and
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the number of fanout connections associated with it in the
netlist. If a resource in the original netlist has one or more
corresponding resources with the same number and type of
fanout connections we then process this pair further as a
prospective match [Fig.2D].

Not all matching resource and fanout relationships are
indicative of matching IP. Further processing must be done
before we can evaluate confidence on whether or not this
matching pair represents the ‘same’ functional element. We do
this by traversing each child node in the corresponding match
in the user design and cross referencing the fanout relationship
of the child with the children of the matched resource in the
unknown netlist [Fig.2E]. If the children of each resource are
found to each have a matching resource in the other set, then
this grouping of nodes can be determined to be functionally
equivalent at this stage.

Sometimes a resource belonging to the original user IP
may have more fanout connections expressed in the unknown
design than in the original design. This may happen when
specific signals are being shared between various design
elements such as a design wide ‘reset’ or ‘enable’ signal being
shared by both user IP and elements in the unknown design. If
matching pairs are observed between both designs, we apply
subgraph backtracking [27] on relevant fan-in connections to
reevaluate resources being shared with user IP in an unknown
netlist.

Subgraph traversal terminates when there are no unique
children that can be traversed. Generally termination happens
when a child node’s next step is to a child of a subgraph
that has already been processed, when the only untraversed
step left loops back on a child node whose paths have already
been processed, or when the next step of the subgraph is to an
I/O resource - which indicates completion of the current path.

D. Similarity Rating
After processing the logic elements in both the user and

unknown designs, a similarity coefficient is calculated with
respect to the user netlist. We use the Szymkiewicz–Simpson,
or overlap coefficient [28] as our similarity metric to account
for the potential that either of the two designs being compared
represent a subset of the other.

overlap(Nu, Nb) =
Nu ∩Nb

min(Nu, Nb)
(1)

Our usage of this coefficient denotes the ratio of common
structural similarity between an unknown design and the user
IP. The intersection of user netlist Nu and unknown design Nb

is composed of elements of between designs that demonstrate
a high degree of structural equivalence to each other. A high
similarity index reflects a high ratio of elements in a user IP
are expressed in the unknown design.

When ReCon determines a high confidence that user IP
is present in an unknown design, an analyst can then use
the matching subgraph found by ReCon for more targeted
analysis, such as isolated simulation. This contrasts to simply

reversing an unknown bitstream and simulating aspects of the
netlist to try and determine piracy. ReCon allows analysts to
quickly identify the structure in the netlist that corresponds to
stolen IP and perform further analysis steps such as focusing
simulation on the matching substructure.

VI. RESULTS AND EVALUATION

We tested ReCon’s IP detection with netlists of different
benchmark circuits as the original user IP. We “stole” the
netlist by reverse-engineering a bitstream back into a netlist
and integrating it with other modules to reflect illicit deploy-
ment of the IP in a larger unknown design. Then, ReCon is
able to discern the functionality and structure of the user IP
in malicious designs with confidence rating shown in Table 1.
We also demonstrate that a low similarity index is calculated
when comparing two designs with incongruous netlists.

1) Experimental Setup: Our IP piracy detection experi-
ments were performed on a Xilinx Artix-7 xc7a35ticpg236-1L.
Our experimental model uses various real-world designs from
open-source projects [?] as protected IP that we want to detect
in potentially malicious designs. During experimentation we
synthesize our user circuits with other larger designs and allow
the synthesis process to optimize and change resource place
and routing.

2) Basic Identification: IP detection using a reverse engi-
neered unknown netlist must be resilient to place and route
permutations. We demonstrate that our IP detection method
is resistant to spatial place and route changes by generating
multiple bitstream designs from a user netlist for various
designs with different place and route constraints. We use these
bitstreams to then evaluate how accurately ReCon can detect
pirated IP.

Table 1.1 describes the accuracy of finding netlists within
bitstreams composing only of designs with varying placement
in the fabric. The resulting similarity index between the
original netlist B and B′ permutations of the same circuit
demonstrates a high confidence rating that the golden netlist
is present in the extracted bitstream - regardless of place and
route changes.

To demonstrate that ReCon can detect IP regardless of its
spatial implementation we also show accuracy when user IP
is not in the test bitstream. We tested for negative scenarios
where a user IP is not present in a design by comparing the
golden B′ user netlist with bitstreams that do not include
the user circuit at all, but instead another design. As seen in
Table 1.3, when our algorithm cannot confidently match the
golden B′ netlist within a bitstream, a low confidence rating
is associated with the result.

3) Complex Identification: Detecting IP when it is used as
part of a larger design is complicated when the design tools
closely integrate logic during synthesis and implementation.
To overcome optimizations in the design flow ReCon must be
resilient to these changes and able to detect IP given variations
in the design flow.

For this evaluation we experimented with finding user IP in
larger composite designs by taking user IP and synthesizing
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TABLE I: Results of ReCon algorithm on various trials for detecting stolen IP directly from a bitstream.

User IP Extracted Bitstream Detected In Design Similarity Index Place & Route Resources (User / Unknown)

1) Self-IP identification.

PicoRiscV32 [29] PicoRiscV32 Yes 0.95 Changed 1721 / 1721
OpenRisc1200 [30] OpenRisc1200 Yes 0.93 Changed 11258 / 11258
DarkRisc [31] DarkRisc Yes 0.93 Changed 1456 / 1456

2) Pirated IP in bitstream.

PicoRiscV32 UART + PicoRiscV32 Yes 0.92 Changed 1721 / 1996
PicoRiscV32 UART + SHA128 + PicoRiscV32 Yes 0.90 Changed 1721 / 2724
OpenRisc1200 SHA128 + OpenRisc1200 Yes 0.89 Changed 11258 / 11986
OpenRisc1200 UART + SHA128 + OpenRisc1200 Yes 0.89 Changed 11258 / 12361

3) No Pirated IP in bitstream

PicoRiscV32 DarkRisc - 0.26 Changed 1721 / 1456
SHA128 [32] PicoRiscV32 - 0.11 Changed 678 / 1721
OpenRisc1200 PicoRiscV32 - 0.23 Changed 11258 / 1721
DarkRisc SHA128 - 0.15 Changed 1456 / 678

with other RTL modules. When synthesized in this manner
the user netlist may become optimized in the fabric during
place and route to ensure timing and circuit efficiency is met.
Results for this evaluation are demonstrated in Table 1.2.

For this experiment we generated bitstreams of various
processor core RTL modules with different modules that
interfaced with the IO of each design. Each bitstream had
different constraints on place and routing to coerce the design
process to optimize each implementation differently. ReCon
determined a high confidence that the individual user designs
were contained in each bitstream, calculating at the lowest, a
.89 similarity index that the golden IP was in the design.

Next we attempted to discern the user netlist in a more com-
plex composite design. This test incorporateds other unrelated
RTL modules in addition to the user netlist. The introduction
of these extra elements into the bitstream tests ReCon’s ability
to identify false positives when reconstructing the user IP
from the larger design. For ReCon to accurately identify the
user IP in this bitstream it must also be able to disentangle
unknown logic from the user design after optimization by the
tools. The post-implementation phase of these experiments
consists of highly entangled resources between these modules.
ReCon analyzed a high similarity index of around .90 in
this experiment. The resulting similarity index successfully
determined a high-likelihood that the user netlist is included
in this bitstream.

4) Evaluation: The experiments conducted in Table 1
demonstrate that detecting a user IP in a bitstream is resistant
to changes in placement and routing. We implemented these
experiments to test the ability of ReCon to establish baseline
results and show how accurate IP detection is possible given
only a bitstream and the original user netlist.

Based on our implementation and experiments, the simi-
larity index of IP being when it is included in an unknown
bitstream is generally found to be around .90 or higher. When
an IP is not present in the unknown bitstream the similarity
intersection is less than .3.

Dissimilar designs being given a similarity rating higher

than 0.2 occur because non-trivial designs will share a number
of basic logic structures. ReCon attempts to match all parts
of the golden netlist into the unknown design. This includes
attempting to traverse logical elements that have very low
fanout connections. Between any given set of netlists, there is a
high probability of finding many 1-to-1 connections between
logic resources. For example, the pattern of one Flip Flop
fanning out to a single downhill AND-gate occurs frequently
in many netlists. When this pattern is present it is very likely
that this will also be found in the unknown bitstream as this is
a common structure in sequential circuits. In our experimental
data we chose to include all matching substructures in ReCon’s
analysis, however the algorithm can be constrained to devalue
common netlist structures when determining similarity.

ReCon’s focus on the structural and functional constraints
of in-fabric resources allows for fast comparison and identifi-
cation of design similarities. ReCon uses the structure found
within a bitstream to make decisions about potential matches
between designs.

VII. CONCLUSION

In this paper, we presented the ReCon IP piracy detection
algorithm to identify user IP directly from a bitstream. The
ability to detect IP piracy from an unknown bitstream without
the use of additive watermarking techniques represents a
divergence from traditional forms of FPGA IP watermarking.
When using the ReCon algorithm golden user IP essentially
becomes the watermark for its own design. In our experiments
we showed how the ReCon algorithm is resilient to changes
in the bitstream that may occur due to variance in the design
flow. Our experimental results of the ReCon algorithm also
demonstrated accurate detection of user IP both when it is
stolen as a standalone design and also when it is embedded
in a larger complex design.
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