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Abstract

The morphological systems of natural languages are replete with
examples of the same devices used for multiple purposes: (1) the same
type of morphological process (for example, su�xation for both noun
case and verb tense) and (2) identical morphemes (for example, the
same su�x for English noun plural and possessive). These sorts of sim-
ilarity would be expected to convey advantages on language learners in
the form of transfer from one morphological category to another. Con-
nectionist models of morphology acquisition have been faulted for their
supposed inability to represent phonological similarity across morpho-
logical categories and hence to facilitate transfer. This paper describes
a connectionist model of the acquisition of morphology which is shown
to exhibit transfer of this type. The model treats the morphology ac-
quisition problem as one of learning to map forms onto meanings and
vice versa. As the network learns these mappings, it makes phonolog-
ical generalizations which are embedded in connection weights. Since
these weights are shared by di�erent morphological categories, trans-
fer is enabled. In a set of simulations with arti�cial stimuli, networks
were trained �rst on one morphological task (e.g., tense) and then on
a second (e.g., number). It is shown that in the context of su�xation,
pre�xation, and template rules, the second task is facilitated when the
second category either makes use of the same forms or the same general
process type (e.g., pre�xation) as the �rst.

�I thank Harald Baayen and Robert Schreuder for helpful comments on an earlier draft.



1 Shared Morphology and Transfer

The morphological systems of natural languages are replete with examples
of the same devices used for multiple purposes. At the most abstract level,
this involves the tendency for languages to rely on the same type of mor-
phological process for diverse grammatical functions. A language that uses
pre�xation for noun in
ection is more likely to use pre�xation for verb in
ec-
tion than is a language that uses su�xation for noun in
ection. For example,
Turkish is a mainly su�xing language, while Swahili is a mainly pre�xing
language. Of course some languages are characterized by a variety of types
of morphological processes, but even here, we may �nd common combina-
tions of processes for diverse functions. Thus Semitic languages make use
of template morphology, pre�xation, and su�xation, but the combination
of template and su�x is common to various syntactic categories in many of
the languages.

At a more speci�c level, languages may make use of identical forms for
di�erent functions. This is most familiar for syncretic processes, whereby
a single root undergoes the same morphological process for di�erent func-
tions, for example, in the possessive and regular plural forms of English
nouns. But the phenomenon is more general than this; words belonging
to entirely di�erent syntactic categories may be subject to the very same
processes. Thus, in English the noun plural su�x is also identical to the
third person singular present tense su�x and to a number of other forms,
all undergoing the same morphophonological alternation. A more complex
example of the common use of particular formal devices is provided by the
Ethiopian Semitic language Chaha, where an elaborate palatalization pro-
cess signals the second person singular feminine of the imperfect and jussive
forms of verbs, an equally elaborate labialization process accompanies the
third person singular masculine object su�x on verbs of all tenses and as-
pects, and the impersonal form of verbs in all tenses and aspects is marked
by a combination of these same two processes.

Consider the implications for acquisition of these similarities of form
across the morphological systems of particular languages. Whenever we
�nd similar forms for di�erent meanings in a language, we expect facilitation
in the learning of form but potential di�culty in the learning of meaning
because of the ambiguity of the forms. In the case of general similarities of
morphological rule type (e.g., su�xation vs. pre�xation), there should be
no problem with ambiguity as long as the particular forms are kept distinct.
Under these circumstances, learners might develop perceptual processing



strategies that focus attention for particular purposes (that is, the extraction
of lexical vs. grammatical information) on the beginnings, ends, or middles
of words; on recurring patterns; or on either consonants or vowels, depending
on the sort of rule involved. For production, they might learn routines which
are specialized for combining lexical and grammatical input in particular
ways, for example, by dedicating di�erent resources to di�erent portions
of the word being produced or by alternating consonants and vowels in
particular sequences.

When identical forms are involved, as with the English /z/ su�x for
noun plural, singular noun possessive, and verb third person singular present
tense, there is the potential for confusion on the part of the listener and
the language learner. It is striking that homophony such as this is more
widespread among grammatical morphemes than it is among lexical mor-
phemes. This may have to do with the relatively low informativeness of
grammatical morphemes: they are more often accompanied by redundant
information in the utterance or the extralinguistic context, and failure to in-
terpret them usually does not lead to a communication breakdown. Having
learned a particular form for a particular function, a learner is in a better
position to recognize that form when it appears with a di�erent function.
If the main point is to interpret the lexical morphemes in an utterance, the
recognition of attendant grammatical morphemes, even if their interpreta-
tion is unclear, may prove helpful because it allows the lexical morphemes to
be identi�ed. This would be especially true when the morphological process
involved results in signi�cant distortion of a lexical root, as in the Chaha
example. A child learning Chaha who has mastered the labialization pro-
cess in its use signalling the third person singular masculine object knows
how to identify the verb stem to which this process applies, so when it is
applied to a verb in its unfamiliar impersonal use, the learner is in a posi-
tion to extract the verb, even though there may be confusion as to what is
signalled by the labialization. Eventually, of course, the learner must master
the new grammatical function of the form, but this may be facilitated by
the frequent redundancy. For speakers, including learners, the homophony
is an advantage rather than a disadvantage. Once a form is learned for one
meaning, it can be applied directly to another.

In sum, formal similarity within the morphologies of languages seems to
make good sense from the perspective of acquisition. The learning of form
itself is simpli�ed, and, even when homophony could potentially interfere
with comprehension and the learning of grammatical meaning, there may
be compensation because the identi�cation of lexical morphemes is enabled.



I am not aware of experimental demonstrations that language learners
actually do bene�t from morphological similarity of the types discussed here.
Still, the sheer frequency of sharing in grammatical morphology would lead
one to believe that the similarity must be conferring some advantage on
learners. For the purposes of this paper, I will be assuming that language
acquisition is facilitated by similarity in morphological rule type as well as
in the actual form of the morphemes, though this facilitation still needs
to be veri�ed for human language learners. This assumption means that,
given mastery of a particular form or a particular type of morphological
process (e.g., su�xation) for one function, we would predict faster learning
of the same form or process for some other function than without the prior
learning. However, such transfer can only take place if the learner has the
capacity to generalize across di�erent morphological tasks. That is, there
must be the right sort of knowledge sharing in the system to permit an
advantage for the kinds of similarity we are considering.

Consider the example of English noun plural and verb present tense.
To make matters simpler, let us assume that the two forms are learned in
succession. Say a child has successfully learned the plural morpheme. For
our purposes, this means that she has learned

1. that there are two distinct meanings, singular and plural, associated
with nouns and that these are signaled by the morphology

2. that the singular is unmarked while the plural is marked by a su�x
whose precise form depends on the �nal segment in the stem of the
noun.

Now the child is presented with the task of learning the regular present
tense in
ection. This requires again knowing what is signaled, in this case,
distinctions of the number and person of the subject, and how it is signaled.
If the learning of the latter is to be facilitated, the system must have access
at this point to what it has learned about the signaling of the noun plural,
as well as all other potentially relevant in
ections.

In connectionist models, knowledge sharing translates into shared hard-
ware, speci�cally the weighted connections that join processing units. At
least some of these connections must be utilized by the two domains across
which generalization is to be made. If there is complete modularity between
the parts of the system dedicated to the di�erent tasks, then no gener-
alization is possible. In their critique of the Rumelhart and McClelland



model of the acquisition of the English past tense (Rumelhart & McClel-
land, 1986), Pinker and Prince fault the model on these grounds, for what
they call \morphological localism": the English past tense forms are learned
in a network which is dedicated to this morphological task alone (Pinker &
Prince, 1988). In the Rumelhart and McClelland model, as in most of the
succeeding connectionist models of morphology acquisition (Daugherty &
Seidenberg, 1992; MacWhinney & Leinbach, 1991; Plunkett & Marchman,
1991), morphology learning consists in learning to map a stem onto an af-
�xed form. If such a network is trained to learn the English past tense, say,
how would it bene�t from this knowledge in learning the identically formed
regular English past participle? Pinker and Prince explain how symbolic
models distinguish morphology from phonology and how the phonological
generalizations which characterize the various English -s and -ed su�xes
can be captured in a small set of simple phonological rules. The problem
for connectionist models, they argue, is that there is no place for phonology.
As MacWhinney and Leinbach (1991) have shown, however, morphological
localism is not an inherent feature of connectionist models. By adding a
set of input features which distinguish di�erent morphological categories,
e.g., past tense and past participle, they give their network the capacity to
generalize from one form to another.

While the authors describe only a few relevant results, MacWhinney
and Leinbach's model seems to have the capacity to exhibit transfer when
one su�x resembles another in some way. However, the model is clearly
inadequate as a general model of morphology acquisition. The phonological
input is one that presupposes an analysis of the stem into an English-speci�c
syllabic template and the left- and right-justi�cation of the beginnings and
ends of words. Clearly something very di�erent would be needed for a
language with a radically di�erent phonology.

More importantly, however, this model, like most of the other connec-
tionist morphology models,1 is based on the assumption that the learning of
morphology is a matter of mapping form onto form. Certainly the ostensible
task for the child is to learn to understand what is said to her and to produce
words which convey what she intends, that is, to map form onto meaning
and vice versa. If part of this task involves the apparently simpler task of
mapping one form onto another, the child must somehow �gure out what

1The model of Cottrell and Plunkett (1991) is an exception, but it is only concerned
with production, that is, with the meaning-to-form mapping. The model described here
attempts to accommodate both perception and production.



is to be mapped onto what. In any case, the child is rarely presented the
two relevant forms in succession. The form-to-form mapping seems even less
plausible as a component of morphology learning in the case of languages
where the stem never occurs as a surface form. In learning the Japanese
past tense, for example, would the child be expected to map a stem such
as nom `drink' onto the corresponding past form nonda, even though nom
never appears in isolation in the language and is in fact not even a legitimate
Japanese syllable? A stem such as Japanese nom constitutes an abstrac-
tion, an \underlying representation", and if it plays a role at all in learning,
it is certainly a product of the learning process rather than something to
be taken as given. The situation is even more serious for non-a�xing mor-
phology, where the relevant mapping may be from an underlying sequence
of consonants, e.g., Arabic ktb `write', to an actual verb stem, e.g., katab-
`write (perfect)', which may occur only with one or another a�x. A sequence
such as ktb not only never occurs overtly; it is not even pronounceable. In
sum, models which are trained to map surface linguistic forms onto other
surface linguistic forms cannot constitute general models of the acquisition
of morphology.2

In this paper, I describe a connectionist model of morphological acquisi-
tion, Modular Connectionist Network for the Acquisition of Mor-

phology (MCNAM), which maps surface linguistic forms (sequences of pho-
netic feature vectors which do not presuppose a language-speci�c phonolog-
ical analysis) onto points in a lexicon/grammar space and vice versa. The
model has separate modules for perception and production of words. In
MCNAM, there is a place for phonology, namely, on the hidden layer of the
network, and since the connections into this layer are shared by di�erent
morphological tasks, there is the potential for transfer of the type discussed
above.

The organization of the rest of the paper is as follows. First, I brie
y
describe the MCNAM model itself. Next, I discuss a set of simulations which
investigate the capacity of the model to exhibit transfer. Finally, I consider
some of the implications of the results of these simulations.

2This is not to suggest that children cannot or do not learn mappings from one surface
form to another, only that such learning is not in and of itself the learning of morphology.



2 A Modular Connectionist Model of the Acqui-

sition of Morphology

MCNAM consists of two interconnected modules, one dedicated to the per-
ception of words, the other to their production. The basic architecture is
shown in Figure 1. In the �gure, boxes represent layers of processing units
and arrows complete connectivity between layers. This is a sequential net-
work : particular states of the network are meant to represent elements in a
sequence being input to the network or output by the network. Overlapping
boxes in the �gure indicate sequences of states of particular layers of pro-
cessing units. Each module is a form of simple recurrent network, a network
with separate input and output layers of processing units and a recurrent
hidden layer of units connecting them. For production there is also a set of
units which keeps an accumulated record of the network's sequence of out-
puts and treats this an additional input to the network. These units are not
shown in the �gure; instead they are indicated by the curved arrows on the
SYLLABLE and PHONE layers of units. The perceptual module is trained
to take a word in the form of a sequence of phones as input and to output a
pattern representing the identity of the root and in
ections3 making up the
word. The production module is trained to perform the reverse task. Each
perception input and production output unit represents a phonetic feature,
and the phones which are input to perception and output from production
consist of phonetic feature vectors. On the perception output and produc-
tion input layers, there are separate groups of units for the root \meaning"
and for each in
ectional category (\tense", \person", etc.). Representations
of morphemes are either localized | each morpheme is associated with a
single unit | or distributed | each morpheme is represented by a pattern
of activation across a group of units.

Both word perception and word production require a short-term mem-
ory. A listener must maintain a record of what has been heard so far, and a
speaker must maintain a record of what has been produced so far. In MC-
NAM, it is the recurrent connections which provide the short-term memory
capacity. For both perception and production, the recurrent hidden-layer
connections give the network access to previous hidden layer patterns, and
for production, the network also has access to previous outputs.

A basic assumption behind the model is that the capacity to produce

3For simplicity's sake, I will refer to \in
ectional" morphology, but what is claimed
here is intended to apply to derivational morphology as well.
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Figure 1: Architecture of MCNAM

words builds on the capacity to recognize words. Word recognition is learned
in the perception module in a completely supervised manner. For each input
word sequence, the network is told what the correct output should be. In
the perception module, phonology is learned as a side-e�ect as the system
is trained to recognize words. Phonological knowledge takes the form of
the weights on the connections from the input (phonetic) layer of processing
units to the recurrent hidden layer of units. I have shown elsewhere (Gasser,
1992) that the patterns of activation appearing on this hidden layer embody
generalizations about the phonological structure found in the input forms
and can provide a basis for learning in the production module of the system.
The link between perception and production in the current version of the



model is at the level of syllables. In a trained perception network, the pattern
of activation appearing on the hidden layer following the presentation of a
sequence, including for example, a single syllable, constitutes a summary
representation of that sequence. When input word sequences are broken
into constituent syllables, the hidden-layer patterns following each syllable
can be saved, yielding a sequence of distributed syllable representations. It
is these syllable sequences which link the two modules of the network.

The production module is divided into two submodules, one which maps
input morpheme sets (roots and in
ections) onto sequences of syllables, and
another which maps sequences of syllables onto sequences of phones. The
former represents roughly what the child learns about how to produce words
as she learns how to recognize them. The latter represents the purely phono-
logical knowledge relating syllables to their constituent segments. The two
production modules are trained separately. The syllable sequences which
make up the output of one module and the input to the other are taken di-
rectly from the hidden layer of the perception module. In this paper we will
only be concerned with the syllable-to-phone module within the production
component of the model.

The details of network training are as follows. A morphological task

consists of a set of words in an arti�cial language to be recognized or pro-
duced. For each task there is a set of roots and one or more in
ectional
categories, each realized as a single morpheme through the application of
one regular morphological process, say, su�xation. The set of all possible
combinations of roots and in
ections is divided into a training set, the set
of items which the network will use to adjust its weights, and a test set,
the set of items which will be used to assess the network's performance
but will never a�ect its performance directly. A training or test item is a
form-meaning pair consisting on the form end, of a complete word, that is,
a sequence of phones, and on the \meaning" end, of the set of morphemes
associated with the word form. While the meaning component of each item
contains no real semantics, since it is just a list of tokens, the form-meaning
association is a completely arbitrary one at the level of the individual mor-
phemes. Also note that, like the child, the network has no direct access to
the underlying representations of words.

For each training item, the perception module is presented with a se-
quence of input phonetic feature vectors representing the form end of the
item. For supervised training, the network also requires a target. This
consists of a constant pattern representing the meaning end of the training
item. That is, the network is trained to recognize each of the morphemes



in a word from the very beginning of the sequence. At the beginning of
each word sequence, the hidden layer is re-initialized to eliminate interfer-
ence from previous words.4 At the end of each sequence, there is a word
boundary input pattern. For each input phone the hidden layer and out-
put layer of units are activated in turn. The network's output is compared
to the target pattern, an error is calculated, and the network's weights are
adjusted accordingly with the familiar back-propagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986). For purposes of evaluating the per-
formance of the perception module of the network, the output of the module
is examined following the presentation of the word-�nal boundary pattern.
For each morpheme, the network's response is taken to be the morpheme
which its output is closest to. Performance is evaluated separately for each
morphological category, that is, for the root and each in
ection in a word.

I have demonstrated elsewhere (Gasser, 1994a) that the perception com-
ponent has the capacity to learn pre�xation, su�xation, circum�xation,
in�xation, deletion, mutation, and template rules.5 I have also shown that
performance is always superior with a version of the model in which root and
in
ection recognition are handled by separate hidden-layer modules (Gasser,
1994b). In the modular version, shown in Figure 2 the input (phone) layer
is connected to both hidden-layer groups of units. However, the output root
group of units is connected only to the root hidden-layer group, and each of
the output in
ection groups is connected only to the in
ection hidden-layer
group. In this paper, all simulations make use of this modular version of the
perception component.

For production, I will describe only the training of the syllable-to-phone
module. The inputs to this component are the distributed syllable represen-
tations which appear on the hidden layer of the corresponding perception
component following training.6 For the purposes of training production, the

4This re-initialization is only plausible if beginnings of words are identi�able. While
this is obviously not always the case, word boundaries should be relatively salient in child-
directed speech, and by the time they are learning morphology, children seem to have
already learned a great deal about the speci�c prosodic structure of their language, which
in turn may provide strong clues about word boundaries (Cutler, 1990).

5Reduplication and metathesis are not accommodated by the simple segment-based
model; these would require a hierarchical version of the network which has not yet been
implemented (Gasser, 1994a).

6Somewhat more realistically, it would also be possible to train perception and produc-
tion simultaneously. In this case phone production would be based on changing syllable
representations as the weights from the phone to hidden layers of the perception compo-
nent are modi�ed. The two components have been trained separately here in order to
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Figure 2: Modular Perception Network

perception component is �rst trained on all of the combinations of root and
in
ections, including those words which served only as test items for per-
ception training proper. Next the syllable-to-phone production network is
trained on a subset of the possible words, the remainder being set aside for
testing. At the input level, each word consists of a sequence of syllables, and
at the output/target level a sequence of phones. Each syllable is presented
on enough time steps for the network to output the sequence of phones cor-
responding to that syllable. As with perception, each word is initiated with
an initialized hidden-layer pattern. For production, performance is evalu-
ated on each output of the network. The network's response is taken to be
the phone which the network's output pattern is closest to.

The phonological knowledge that is embodied in the weights of both
networks is also available to be used in the learning of in
ectional categories
other than those for which the network was originally trained. Thus there
is at least the potential here for transfer from one task to another. The
general question to be addressed in this paper, then, is, given a network
which has been trained on a particular perception or production task, is

simplify the analysis of the behavior.



there facilitation during training on a subsequent task?

3 Transfer Simulations

Consider an imaginary language learning task in which the learning of one
in
ectional category is followed by the learning of another, which applies
either to the same syntactic category as the �rst or a di�erent one. We would
expect the second task to be easiest if the speci�c form of the in
ections, as
well as the type of in
ectional process, were the same as for the �rst task.
We would expect the second task to be facilitated, but less so, if the type
of in
ectional process, for example, pre�xation, but not the speci�c form of
the in
ections, were the same. And we would expect the least facilitation,
perhaps none at all, when the type of in
ectional process itself di�ers. I
describe a series of simulations which test these hypotheses for MCNAM.

In each of the simulations to be described, training and testing of the
network proceeded in two phases. During the �rst phase, the network was
trained on a particular task, for example, recognition of words formed with
a su�xation rule. Next the trained network was presented with a second
task, for example, recognition of a set of words formed with a pre�xation
rule. In each case, the second task required the learning of a new in
ectional
category. Of interest was the rate of learning of the network on this second
task.

3.1 Perception: Pre�xation, Su�xation, and Templates

The �rst set of simulations investigated the degree of transfer for the percep-
tion component of the network when the �rst and second tasks involved the
same type of morphological process and further when the speci�c in
ections
were the same.

To compare performance on pre�xation and su�xation, a set of 24 roots
was generated, 12 of these of the form CVCVC and 12 of the form CVC.
There were twelve segments in all. Pre�xes and su�xes each consisted of two
segments. For each in
ectional category, there were 3 a�xes. Two sets of
pre�xes (�-, di-, do-; be-, bu-, zi-), and two sets of su�xes (-if, -is, -os; -et,
-ep, -up). For example, for the root fetos, possible words included �fetos,
dofetos, fetosif , and fetosup. In these and all other simulations reported in
this paper, the set of training items consisted of 2/3 of the set of possible
words, and the test set consisted of the remaining 1/3.



Pilot simulations compared performance under di�erent conditions when
the roots di�ered for the �rst and second tasks, and results were not found
to di�er signi�cantly from the case where the roots were the same. Results
reported here are all for a single set of roots.

For Simulations 1, there were 6 separate conditions: (a) Task 1: pre�x,
Task 2: su�x; (b) Task 1: su�x, Task 2: pre�x; (c) Task 1: pre�x (set
1), Task 2: pre�x (set 2); (d) Task 1: pre�x (set 1), Task 2: pre�x (set 1);
(e) Task 1: su�x (set 1), Task 2: su�x (set 2); (f) Task 1: su�x (set 1),
Task 2: su�x (set 1).

The results are shown in Figures 3 and 4. Here, and in all succeeding
plots for the perception simulations, only the performance on the in
ection
recognition task is shown, and results are average performance over 10 sepa-
rately trained networks. For comparison, the �gures also show performance
on the �rst task for both the pre�xation and su�xation cases. Since there
are always only three alternatives for the in
ection recognition task, chance
performance is 1/3. The results indicate clearly that perception performance
on pre�xation or su�xation is facilitated when the network has already been
trained on the same sort of a�xation and facilitated further when the a�xes
themselves are the same for the two tasks.
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Figure 3: Simulations 1: Perception; Learning pre�xation initially and
after another task
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Figure 4: Simulations 1: Perception; Learning su�xation initially and
after another task

A second set of simulations examined performance of the network on
words consisting of a stem and two a�xes, either a pre�x and a su�x or two
su�xes. During the �rst phase, the network was trained on words containing
only two morphemes, and during the second phase, the third morpheme was
added. There were two conditions: (a) Task 1: pre�x; Task 2: pre�x and
su�x; (b) Task 1: su�x; Task 2: two di�erent su�xes. The (b) condition is
similar to what we might expect, for example, for the task facing a Turkish
child who has learned one set of noun su�xes, say, the possessives, and is
taking on another, say, the case markers.7

The results are shown in Figure 5. There is a clear advantage for the
network learning two su�xes.

A �nal set of perception simulations investigated transfer for words
formed with a template rule and with a su�xation rule. Since it was im-
possible to use the same roots for the two kinds of rules, in all of these
simulations, the set of roots for the second task di�ered from that for the
�rst. For each rule type, two sets of 45 roots were generated, using an al-

7Of course we would not expect the learning of these two categories to proceed in
a strictly sequential fashion; the tasks are treated sequentially here only to allow us to
separate out the e�ect of one task on the other.
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Figure 5: Simulations 2: Perception; Learning one a�x, then two, perfor-
mance on task 2

phabet of 20 segments. For su�xation, roots took the form CVC, CVCV,
and CVCVC, and there were two sets of su�xes: -if, -in, -uk (set 1); -
om, -ot, -ex (set 2). For templates, all roots consisted of three consonants,
and there were two sets of templates: C1aC2C3a;C1C2aC3C3a;C1aC2aC3a

(set 1); C1aC2C2aC3; C1aC2aC3; C1C2aaC3 (set 2). Thus for the root rng ,
possible words included ranga, rnagga, and ranaga.

In each case, words were composed of a root and one in
ection. There
were four conditions: (1) Task 1: su�x, Task 2: template; (2) Task 1:
template (set 1), Task 2: template (set 2); (3) Task 1: su�x (set 1), Task
2: su�x (set 2); (4) Task 1: template, Task 2: su�x.

Figure 6 shows the results. Again we see a de�nite advantage for net-
works which are learning a task which is similar to one they have already
learned. Notice, however, that the advantage disappears as training pro-
ceeds. This e�ect is apparent in some of the other simulations as well. Given
enough time, the back-propagation learning algorithm can often adjust the
network's weights in such a way that initial disadvantages are largely over-
come. We would not expect the disappearance of the transfer advantage
due to morphological similarity, however, if training had continued on the
initial task after it began on the second task. Under these conditions, the



network would have been forced to satisfy simultaneously the constraints
imposed by the two tasks.
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Figure 6: Simulations 3: Perception; Learning templates and su�xation
separately, performance on task 2

3.2 Production: Pre�xation and Su�xation

For production, only the syllable-to-phone module was trained, and only
pre�xation and su�xation were compared. The roots and rules were iden-
tical to those used in Simulations 1. For these experiments, there were four
conditions: (a) Task 1: pre�x, Task 2: su�x; (b) Task 1: su�x, Task 2: pre-
�x; (c) Task 1: pre�x (set 1), Task 2: pre�x (set 2); (d) Task 1: su�x (set 1),
Task 2: su�x (set 2). For each condition, the corresponding perception net-
work was �rst trained on all possible words. Next syllable representations
were extracted from the hidden layer of the trained network; that is, the
patterns of activation appearing on the hidden layer following each syllable
were saved. These patterns were used as inputs to the production network,
which was trained to output a sequence of phones in response to an input
sequence of syllables.

Figures 7 and 8 show results for the production simulations. Performance
in each case is averaged over all of the segments. Since there are 12 phones



in all, chance performance is 1/12. As with perception, we see a clear early
advantage for the cases in which the �rst and second tasks share the same
type of a�xation.

0 10 20 30 40 50

Epochs of Training

0

0.2

0.4

0.6

0.8

P
ro

po
rt

io
n 

C
or

re
ct

Prefix
Prefix learned after suffix
Prefix learned after prefix

Figure 7: Simulations 4: Production; Learning pre�xation initially and
after another task

3.3 Transfer and Vowel Harmony

As an initial investigation of the role of morphophonology in transfer for the
model, two simulations examined the performance of the network trained
on a su�xation rule constrained by vowel harmony. Stimuli for these sim-
ulations were formed from a set of 42 stems (CVC and CVCVC) generated
from an alphabet of 20 segments, and two separate su�xation rules. The
vowels in all of the stems agreed in the feature backness. There were two
separate su�xation rules, one for which the su�x vowel had to agree in
backness with the stem, and one for which the su�x was �xed. The two
sets of su�xes constrained by harmony were -if/-uf, -en/-on, -ik/-uk and
-im/-um, -ex/-ox, -ep/-op. The single set of su�xes in the �xed case (re-
quired only for the �rst task) was -if, -en, -uk . There were two conditions:
(a) Task 1: harmony, Task 2: harmony; (b) Task 2: no harmony, Task 2:
harmony.
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Figure 8: Simulations 4: Production; Learning su�xation initially and
after another task

Results are shown in Figure 9. There is a small, but consistent, advan-
tage for the network trained initially on the harmony rule. This is the case
even though the harmony rule is not inherently easier than the �xed rule.

4 Discussion, Limitations, and Conclusions

In summary, the simulations in the paper show that, for one particular con-
nectionist model, performance on word recognition and production tasks
is facilitated when there has been previous training on a morphologically
similar task. The relevant similarity is either the general type of morpho-
logical process, for example, su�xation as opposed to a template rule; or
the speci�c form of the morphemes; or the presence of a morphophonological
constraint.

In one sense this is not surprising. In the perception network (which
also provides the basis for the input patterns to the production network),
the hidden units, and in particular, the units in the in
ection module, are
involved in both of the tasks presented to the network. That is, the weights
on all of the connections into these units, as well as the recurrent connec-
tions joining these units to each other, are shared by the two tasks. But
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Figure 9: Simulations 5: Perception; Learning su�xation with and with-
out vowel harmony

a connectionist network such as this has a very large number of ways of
solving a given task. It is certainly conceivable that it might make use of
these resources in an idiosyncratic way, one that is no more useful for the
solving of a second, super�cially similar, task than any other. This is not
what we �nd, however. As the perception network learns the �rst task, it
�nds solutions which are relatively general.

But what sorts of solutions? Though I am not yet in a position to an-
swer this question with much con�dence, we can speculate based on the
gross behavior of the network. Neural networks develop their own repre-
sentations using the raw material (a pattern of connectivity, an activation
rule, a learning rule) provided by the modeler. These representations bear
little resemblance to the rules, trees, and automata familiar from symbolic
models, and they are often uninterpretable to an outside observer without
the aid of statistical techniques such as principal component analysis (El-
man, 1990). A neural network may be said to \represent" in two distinct
ways: (1) through the patterns of activation which appear on its units as
it processes inputs and (2) through the weights on its connections. Each
pattern of activation is a point in a multi-dimensional space, one dimen-
sion for each unit in the network or subnetwork under consideration. In



networks whose activation patterns evolve over time, such as attractor net-
works (Amit, 1989) or recurrent sequential networks like MCNAM, one can
examine the temporal behavior of the system, looking for attractors, regions
in the representational space which the network tends to fall into in response
to classes of inputs.

Consider the behavior of the perception component. The patterns of
activation appearing on the root and in
ection hidden layers of the network
constitute representations of particular points in a sequence of input phones.
We can consider these two hidden layers separately since they have no in-

uence on one another. Recall that the output of the perception component
was evaluated only at the end of the input sequence. This means that, for
the network to respond appropriately, the patterns of activation on the two
hidden-layer modules need in some sense to \contain" the root and in
ection
at the end of the sequence. Not surprisingly, the in
ection hidden layer pat-
terns appearing at the ends of the sequences cluster according to the number
of distinct in
ections that are learned. If there are three in
ections, all �nal
in
ection hidden layer patterns will tend to fall into one of three attractor
states. It is these attractors which constitute the network's representations
of the form of the in
ections.

During a pre�xation task, the in
ection hidden layer must respond at
the beginning of the input sequence and then remain mostly unin
uenced
by subsequent inputs; that is, there are relatively \deep" attractor states
corresponding to the di�erent pre�xes. It is not surprising that a second task
involving the same set of pre�xes is facilitated; since all words begin with
the same initial state, up to the beginning of the stems the new words will be
completely familiar to the network. For correct identi�cation of the pre�xes,
all that is required is that the pre�x attractors in the in
ection hidden
layer are \deep" enough to prevent that layer from being thrown o� by the
novel stems. However, the fact that the second task is also facilitated for
a di�erent set of pre�xes indicates that the network has learned something
more abstract than just the particular pre�x attractors. If there is a \meta-
attractor" corresponding to pre�xation in general, it cannot be a region
in hidden-layer space because these regions represent particular pre�xes.
Rather this abstract knowledge would seem to be located in the weights
connecting the input and context layers to the hidden layer. That is, the
weights in the network trained on a pre�xation task are such that more
attention is directed at the beginnings of words. However, it is not yet clear
how the network implements this attentional tendency.

The story is similar for su�xation, except that here it is the path into,



rather than out of, the hidden-layer a�x attractors which presents the chal-
lege for the network. I cannot say whether the network learns to explicitly
represent the stem-su�x boundary, but again the fact that there is facilita-
tion for a di�erent set of su�xes on the second task indicates that attention
is somehow focused on the ends of words in the in
ection hidden layer of a
network trained on su�xation.

For templates, the picture is somewhat more complicated. In order to
distinguish the di�erent templates, the in
ection hidden layer must \attend"
to all parts of the word. The transfer advantage when a template task is
followed by another template task, rather than a su�x task, may again
be due to the learning of attentional preferences, though position within the
word is of course not the only feature distinguishing su�xes from templates.

In the production simulations, only the syllable-to-phone portion of the
network was trained. This subnetwork takes the hidden-layer representa-
tions from the perception network at the ends of syllables as inputs. Each
of these input patterns has a root and an in
ection part, corresponding to
the two hidden-layer modules in the perception network. Thus the inputs
are not simply patterns representing syllable sequences; they are patterns in
which the in
ection part represents the same syllable in di�erent parts of the
word di�erently. Thus for a pre�x task, the patterns in the in
ection part
for the syllable ku at the beginning and ku at the end of a word would di�er.
This would also be true to a lesser extent for the root part of the pattern.
The task of the production network is to interpret the sequence of sylla-
ble input patterns. To do this, it does not need to treat a�xes di�erently
from other syllables in the word; all output segments have the same status.
However, the existence of the transfer e�ect in the production simulations
indicates that the production module is somehow capitalizing on the way in
which the input syllable representations treat syllables di�erently depending
on their position in the word. How it manages to do this I cannot say at
this time.

There are several ways in which the language learning task presented to
the network di�ers from the child's. The stimuli themselves are arti�cial,
and it will be crucial to test the network on less regular stimuli from real
languages. While this has not been attempted, the large literature on the
learning of regular and irregular morphology by neural networks (Cottrell
& Plunkett, 1991; Daugherty & Seidenberg, 1992; Hare & Elman, 1995;
MacWhinney & Leinbach, 1991; Plunkett & Marchman, 1991; Rumelhart
& McClelland, 1986) is relevant. The indication is that networks some-
what similar to the one discussed in this paper are not thrown o� by the



combination of regular and irregular morphology.
The treatment of \semantics" in the model is also far from adequate,

the assumption being that semantic nodes were already available for the
meanings of all of the morphemes being presented. While the focus here has
obviously been on the formal end of the acquisition of morphology, it is clear
that factors such as phonological, semantic, and conceptual transparency
interact in acquisition (Schreuder & Baayen, 1995), and in future versions
of the model it may be impossible to ignore the acquisition of semantics
itself.

Another potential concern is the size of the lexicon used in the simula-
tions. Of course children start with small lexica, but they eventually learn
thousands of words, and there is no reason to expect that the principles of
transfer investigated here will play a lesser role as a lexicon grows. The e�ect
of lexicon size in the model is a complex issue, however, requiring detailed
investigation. Within the current model, a larger number of roots requires
either more root units if roots are represented in a localized way or a denser
concentration of distributed patterns across a �xed-length root layer. More
crucially, however, given a �xed phonological inventory, phonotactics, and
mean root length, a larger lexicon means greater confusability between mor-
phemes on the form end. While there is no particular reason to believe that
these factors will interact with transfer e�ects, this conjecture will need to
be veri�ed in simulations.

Much remains to be done, in particular with regard to understanding
why transfer happens in the network. A full-
edged connectionist theory of
morphological (and phonological) learning must wait for an in-depth analysis
of the network's behavior. Still, these simulations provide initial evidence
that connectionist models of morphological learning, which are out�tted
with neither explicit roots, stems, nor a�xes, are capable of generalizing
from one in
ectional category to another.
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