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Abstract

Why do children learn nouns such as cup faster than dimensional adjectives
such as big? Most explanations of this phenomenon rely on prior knowledge of
the noun-adjective distinction or on the logical priority of nouns as the arguments
of predicates. In this paper we examine an alternative account, one which relies
instead on properties of the semantic categories to be learned and of the word
learning task itself. We isolate four such properties: the relative size, the relative
compactness, and the degree of overlap of the regions in representational space
associated with the categories and the presence or absence of lexical dimensions
(what color?) in the linguistic context of a word. In a set of five experiments,
we trained a simple connectionist network to label input objects in particular
linguistic contexts. The network learned categories resembling nouns with respect
to the four properties faster than it learned categories resembling adjectives.

Young children learn nouns more rapidly and less errorfully than they learn adjec-
tives. The nouns that children so readily learn typically label concrete things such as
BLOCK! and DOG. The adjectives that young children learn with greater difficulty la-
bel the perceptible properties of these same objects, for example, RED and WET. Why
are concrete nouns easier for young children to learn than dimensional adjectives?
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It is common in the study of cognitive development to explain such differences in
learning by positing domain-specific mechanisms dedicated to that learning. Thus one
might explain the noun advantage by looking for conceptual structures that specifically
constrain or promote the learning of nouns and the lack of such specific structures for
adjectives. In this paper, we pursue an alternate idea. We propose that common nouns
and dimensional adjectives are initially acquired by the very same processes in the very
same way. But, we argue, many mundane factors conspire to make names for common
things more easily learned than labels for the properties of those things. We test our
account by examining how a general category learning device, a multi-layer feedforward
connectionist network, learns concrete nouns and dimensional adjectives.

1 The Phenomenon

Three kinds of evidence point to the initial priority of names for things over labels for
the attributes of those same things. The first concerns the kinds of words that comprise
early productive vocabularies. Nouns dominate; dimensional adjectives are rare or non-
existent. For example, in Stern’s diary study of the acquisition of English (Gentner,
1978), 78% of the words produced at 20 months were nouns while none were adjectives.
Similarly, in Nelson’s (1973) study of 18 children learning English, fewer than 7% of the
first 50 words were adjectives. The priority of nouns over adjectives in early vocabularies
is evident in other languages as well. In Dromi’s (1987) study of one child learning
Hebrew, only 4 of the first 337 words were adjectives. In a longitudinal study of the
acquisition of Spanish by 328 children, Jackson-Maldonado et al. (1993) found only one
adjective among the 88 most common words. The finding that adjectives are infrequent
in early vocabularies is remarkable given that common dimensional adjectives such as
size and color terms are among the most frequently used words in adult language.

The second class of evidence concerns studies of artificial word learning. In this
commonly used method, experimenters present a novel object to a child and label it with
a novel word (e.g., “this is a dax”). Children’s interpretation of the word is measured by
the kinds of other objects to which they generalize the newly learned label. Considerable
evidence indicates that by 18 months (and quite possibly before), children interpret novel
nouns as referring to taxonomic categories (Markman, 1989; Waxman, 1994). Further,
the evidence suggests that children remember what they have learned over several days
and weeks (Woodward, Markman, & Fitzsimmons, 1994). There have been a number of
attempts to use these methods to teach novel adjectives. In these studies, the novel word
is placed in an adjectival context (e.g., “this is a daxy one”) or is explicitly contrasted
with a known adjective (e.g., “this is ecru, not red”). Learning in these instances has
proved modest at best, even in children as old as 36 months (Au & Laframboise, 1990; Au
& Markman, 1987; Carey, 1978; Smith, Jones, & Landau, 1992; Taylor & Gelman, 1988).
Cross-linguistic studies of artificial word learning also suggest that names for concrete
things are special in early language learning (Imai & Gentner, 1993; Waxman, 1994) in
that there are considerable similarities in the nature of children’s noun extensions across
languages and considerable variability across (and within) languages in young children’s
interpretation of novel adjectives. Other evidence from children learning English suggests



that the initial meanings of dimensional terms may be highly context specific (Keil &
Carroll, 1980). In sum, whereas names for things appear to be “fast mapped” (Carey,
1982) to potential categories, the extension of a novel adjective appears more slowly and
more variably determined.

The third class of evidence concerns children’s errors with nominal and adjectival
meanings. There are extensive literatures in both areas although they are difficult to
compare because of vastly different methods, ages of subjects, and empirical questions
asked. These differences derive directly from the noun advantage over adjectives. The
key question for researchers who study early noun acquisition is how it is that children
learn so many nouns so rapidly and with so few errors. The only errors consistently
studied in this literature are the overextension errors typically noticed at about the
time productive vocabulary first begins to accelerate. However, there is a debate as to
whether these errors are category errors. Instead, these overextensions (for example,
calling a zebra “doggy”) may reflect pragmatic strategies or retrieval errors (Gershkoff-
Stowe & Smith, 1996; Huttenlocher, 1974). Consistent with this idea is the rarity of
overextensions in comprehension (see, for example, Naigles & Gelman, 1995).

In contrast, the key question for researchers who study the acquisition of dimensional
adjectives is why they are so difficult to learn. The central phenomena are comprehen-
sion errors. Long after children begin to use dimensional words, when they are as old as
3, 4, or even 5 years, their interpretations of dimensional adjectives are still errorful. This
literature is replete with examples of both within- and between-dimension errors, inter-
preting big to mean TALL (Maratsos, 1988), big to mean BRIGHT (Carey, 1978, 1982),
dark to mean LOUD (Smith & Sera, 1992), and blue to mean GREEN (Backscheider &
Shatz, 1993). Although plentiful, these errors are constrained. They consist of confu-
sions within the semantic domain of dimensional terms. That is, children may confuse
dark and loud but they do not confuse dark and room. The category specificity of these
errors means that at the same time children are rapidly learning nouns and commonly
misinterpreting adjectives, they have some idea that nouns and adjectives span different
categories of meaning.

In sum, the phenomena to be explained are (1) why common nouns are acquired
by young children earlier, more rapidly, and with fewer errors than are dimensional
adjectives and (2) how, during the protracted course of learning dimensional adjectives,
young children seem to recognize that the dimensional adjectives comprise a class.

2 Rationale for a Similarity-Based Approach

One way of construing the problem is in terms of category learning. Why are common
noun categories more easily learned than common adjective categories?

Several proposals have been offered suggesting a foundational conceptual distinction
between objects and their attributes. For example, Gentner (1978), Maratsos (1988),
and Macnamara (1982) have all suggested that nouns are logically prior. They point out
that predicates presuppose arguments but that the reverse is not true. The suggestion,
then, is that children need not understand shaggy to figure out what dog means from
examples like the dog is shaggy but must know dog to figure out shaggy from the same



sentence. Similarly, Markman (1989; see also, Carey, 1994) proposed that children’s
initial hypotheses about word meanings adhere to a “whole-object principle” — that
children assume that novel labels refer to individual whole objects rather than to their
component properties or to collections of objects. Thus, by this account, children’s
initial hypotheses about meanings are noun-like. Although these proposals are probably
somewhat correct, they seriously underspecify the processes through which knowledge
about the differences between nouns and adjectives is instantiated or acquired.

We seek such specification in a similarity-based account. Our idea is that the noun
advantage and an initial segregation of nouns and adjectives as distinct classes of words
is the result of the most general and ordinary processes of associative learning. There
are two arguments for this approach which we find compelling. First, whatever else
children know or believe, similarity-based associative learning is part of their biology
and thus a good place to begin looking for a mechanistic account. Second, similarity-
based learning would seem crucial at the front-end when children know no language. At
this point, children learn many words by ostensive definition (Mervis, 1987). Parents
point to an object and say, for example, “that’s a dog” or “that’s big.” This associative
task of mapping words to perceptible properties would seem to be the very same for
the learning of dimensional adjectives as for the learning of nouns. Even if the child
possessed some pre-existing conceptual distinction between objects and their properties,
the child could not use that knowledge at this stage because the child has no words and
thus no knowledge of the syntactic frames that would distinguish whether a novel word
is a noun or an adjective. In the beginning, the young child can only associate novel
labels with the properties of things so labeled. Doing so will yield a representation of
dog as things with DOG properties and a representation of wet as things with WET
properties. While incomplete, such meanings are in fact on the right track.

Given these assumptions, we ask: Why are common nouns learned more readily than
common adjectives?

2.1 Differences in Similarity Structure between Nouns and Ad-
jectives

Previous researchers have pointed to three kinds of difference between common noun
and dimensional adjective categories.

2.1.1 Many vs. Few Similarities

Gentner & Rattermann (1991), Markman (1989), Medin & Ortony (1989), and Rosch
(1973a) have all argued that common nouns label objects similar across many inter-
related and correlated properties. In contrast, dimensional adjectives label objects that
are alike on only one property. This difference between nouns and adjectives has impor-
tant conceptual consequences (see especially Markman, 1989). For example, knowing
that an object is a bird allows predictions about many different properties of the object
but knowing that an object is a member of the category WHITE-THINGS supports only
predictions about the object’s color.



This difference also has important implications for similarity-based learning, as illus-
trated in Figure 1. This figure represents the extensions of idealized nouns and adjectives
as regions in a multidimensional space of all possible objects. The relevant spaces are
hyperspaces of many dimensions, all of those along which noun and adjective meanings
vary, but for ease of illustration we confine ourselves to three dimensions. For example,
the dimensions shown could represent SIZE, SMOOTHNESS, and SHININESS. Each of
the outlined regions within the large cube represents a hypothetical category associated
with a single word, and instances of the category would be points within the region. As
can be seen in the figure, categories organized by many dimensional similarities (cubes
with thick outlines) are small and compactly shaped relative to those that are organized
by similarity on just one property. Thus, the idealized noun is uniformly and closely
bounded in all directions. It is a hypercube or hypersphere. In contrast, members of an
adjective category are tightly constrained in only one direction (the relevant dimension)
but extend indefinitely in all others. The idealized dimensional-adjective category thus
may be thought of as a “hyperslab.” Further, the volume of idealized noun categories,
compact in all dimensional directions, is relatively small whereas the volume of adjective
categories, extending indefinitely in all directions but one, is great.

Figure 1: Typical Noun and Adjective Categories. Only three dimensions from the set
of dimensions distinguishing the categories are shown. Noun categories appear in thick outline,
adjective categories in thin outline.

Given ordinary ideas about similarity and generalization, these differences clearly
favor nouns. The within-category similarity is greater for the nouns than the adjectives
in Figure 2. Further for nouns, generalization can be non-selective in all directions but
for adjectives generalization must be selectively inhibited in one direction. Learning



about adjectives but not nouns thus requires discovering and selectively attending to
one relevant direction in the multi-dimensional space.

2.1.2 Category Overlap

Nouns and adjectives also differ in the relatedness of one category to another. Common
nouns all classify objects at one level (Rosch, 1973a). An object is a dog or a house
or a watch or a car or a leaf. Thus the question what is it? is answerable by one
basic noun. Markman (1989) incorporated this notion in her proposal that children
adhere to a mutual exclusivity assumption in early word learning. Although this idea
of a one-object, one-name rule is imperfect and complicated by a hierarchical taxonomy
and synonyms, it also captures something quite real about the way common nouns are
commonly used (Clark, 1973; Markman, 1989; Markman & Hutchinson, 1984; Mervis,
1987; Mervis, Mervis, Johnson, & Bertand, 1992; Rosch, 1973a). Dimensional adjectives
present a markedly different structure. They are (typically) mutually exclusive within a
dimension but overlap completely across dimensions. Objects in the category BIG may
also be in the categories WET and FURRY.

An idealization of this difference between common nouns and dimensional adjectives
is depicted in Figures 2 and 3. Relatively small noun categories fill all reaches of the
space but rarely overlap with one another. In contrast, the extensions of dimensional
adjectives create a dense grid-work of overlapping slabs that cut through the space in
multiple directions as illustrated. Again, under the ordinary assumptions of similarity-
based learning, these differences in category structure favors nouns: between-category
similarity among nouns is minimal but between category similarity among adjectives is
great.

2.1.3 Linguistic Associations

Nouns and adjectives also differ in their association with the linguistic form of questions
about objects. Different words, for example what is it versus what color is it? are used
to ask about object categories and object properties. Dimensional adjectives also differ
among themselves in this regard: what color is it asks for a color word as an answer;
how does it feel? asks for a description of texture. Backscheider & Shatz (1993) have
shown that young children are sensitive to these associations between questions and the
class of possible answers prior to their understanding of the meanings of the individual
words. Thus in learning common nouns and adjectives, learners do not just map objects
to words but they also map linguistic inputs to linguistic outputs.

It is not immediately clear whether these word-to-word associations favor nouns or
adjectives. However, given the overlap among the to-be-learned categories, we can be
certain that they are crucial to learning. A big, red, furry dog is a member of the category
BIG, the category RED, the category FURRY, and the category DOG. It is the linguistic
input, the question “what is it?” or “what color is it?,” that specifies the relevant class
of linguistic outputs. These word-to-word maps partition all the categories that the
child is learning into larger proto-syntactic categories — into “noun categories,” “color
categories,” “size categories,” and “texture categories.” In stages of incomplete learning,



Figure 2: Noun Categories. Only three dimensions from the hyperspace of possible dimen-
sions are shown. Noun categories tend to be small and compact and not to overlap with one
another.

do these word-to-word maps also create a distinction between nouns and adjectives such
that adjectives are confused across dimensions but are not confused with nouns?

In what follows, we demonstrate that a simple associative device that approaches the
task of learning about nouns and adjectives in the very same way will nonetheless show
a noun advantage and also the pattern of within-category confusions shown by children.
In addition, we separately investigate the roles of category shape, volume, overlap, and
word-word associations in forming this developmental trajectory.

3 A Connectionist Categorizer

To test our hypothesis that the noun advantage in early acquisition derives from the
associative structure of the learning task, we used the most common similarity-based
learning procedure in the literature — a three-layer connectionist network trained with
back-propagation. Such a general learning device embodies no prior knowledge about
differences between nouns and adjectives, and learning is purely associationist and error-
driven.

As in several other recent modeling studies (Plunkett, Sinha, Mgller, & Strandsby,
1992; Schyns, 1992), we investigate the behavior of a simple connectionist network which
is trained to label a set of patterns representing perceptual inputs to the system. The



Figure 3: Adjective Categories. Only three dimensions are shown. Adjective categories
tend to be large and elongated and to overlap with one another.

goal in these studies is to show how the facts of lexical development emerge from the
interaction between the learning device and the regularities inherent in the input pat-
terns. In our case, the relevant facts concern the relative ease of learning nouns and
adjectives, and the regularities in the patterns concern differences in the way noun and
adjective categories carve up the space of input dimensions and co-occur with particular
linguistic contexts.

The main difference between our network and other simple connectionist models is
our use of a modified form of back-propagation. Back-propagation is suitable in that
early word learning in children is “supervised.” Adults ask children questions about
objects (e.g., “what is that?,” “what color is that?”) and they provide feedback (e.g.,
“that’s not a dog; it’s a horse”) (Callanan, 1990; Mervis, 1987; Snow, 1977; Wood, 1980).
Supervision for categorization tasks such as our word-learning task, as typically realized
in connectionist networks, however, is psychologically unlikely. If separate output units
represent the different category responses, standard back-propagation changes the con-
nection weights on each learning trial in a way that encourages the correct response and
discourages all other potential responses. This is like the parent saying to the child,
“This is a dog, not a plate, not a cat, not an apple, not a house...” Parents do not do
this but instead explicitly reinforce correct answers (“yes, that’s a doggy”) and provide
negative feedback only when the child explicitly gives the wrong answer (“that’s not a
doggy; it’s a horse”).

This form of back-propagation is also inappropriate in the present case because in



the combined task of naming objects and labeling their attributes, possible responses
are not just right or wrong. There are kinds and degrees of wrongness. Consider a big,
black, wet dog and the question “what color is it?” The answers “dog” and “red” are
both wrong. However, it seems unlikely that parents would respond to these errors in
the same way. A toddler who answers the question “what color is it?” by correctly
naming the dog “dog” seems likely to hear a parental response of “yes, it’s a dog, a
black dog.” A toddler who answers the same question by saying “red” is likely to hear,
instead, a parental response of the sort “it’s not red, it’s black.”

Accordingly, we modified the back-propagation algorithm to fit these assumptions
about the kinds of feedback provided by parents. Briefly, we provided targets only for
a limited number of output words, and we distinguished the kinds of incorrect errors
by using distinct targets for them. In the next two sections, we provide a detailed
description of the network and the learning rule.

3.1 The Network Architecture

Figure 4 shows the network architecture. Each thin arrow represents complete connec-
tivity between two layers of processing units. The network is designed to take objects
and a linguistic context as inputs and to produce a noun or adjective as output.

Inputs to the network are presented to two layers of processing units, one for the
representation of the object itself and one for a linguistic context corresponding to a
question the network is asked. Input objects consist of patterns of activation representing
a perceptually present object in terms of a set of sensory dimensions. For the simulations
discussed in this paper, the inputs are specified in terms of four or five dimensions. We
require that the network learn to associate points along each dimension with particular
words, so the simplest possible representation of a dimension, that is, a single unit,
is excluded because it would only permit the association to different degrees of the
dimension as a whole with each word. Therefore each dimension takes the form of
a group of units in the input layer of the network. That is, input to the network
along a given dimension consists of a vector of numbers, each between the minimum
and maximum activation values of the units in the input layer of the network. There
are several ways to represent dimensional input in the form of a vector, varying in
the extent to which they make explicit the ordering of points along the dimension.
At one extreme is a completely localized encoding, in which each dimensional vector
contains one maximum value and the remainder of the numbers take on the minimum
value. This form of encoding completely obscures ordering along the dimension because
there is no correlation between the numbers in different positions in the vector (or the
activations of units in each dimension group). At the other extreme is a “thermometer”
encoding (Harnad, Hanson, & Lubin, 1991). In a thermometer representation, each
of the positions in the vector corresponds to a point along a scale, and the value to
be encoded normally falls between two of the positions. All of those positions to the
“right” of this point take on their minimum values, the first position to the “left” of
this point takes on an intermediate value, and all of the other leftward positions take on
their maximum values.
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Figure 4: The Network. Each small circle is a processing unit, and each rectangle a layer
of processing units, unconnected to each other. An arrow represents complete connectivity
between the units in two layers. A possible input pattern and network response to it are
shown, the degree of shading of each unit representing its activation level. The small squares
at the top of the figure indicate the two targets which the network receives for this pattern,
one for the correct response and one for an incorrect output above the network’s response
threshold.

In this paper, we confine ourselves to thermometer representations.? In the networks
used in the experiments reported here, each dimension is represented by 12 units which
have maximum activations of 1 and minimum activations of 0. So in the network,
dimensional values of 3.3 and 8.8 along the scale with maximum value of 12 would be
represented as the patterns [1, 1, 1, .3,0,0,0,0,0,0,0,0] and [1,1,1,1,1,1, 1,1, .8,
0, 0, 0]. The figure illustrates a possible set of activations along each of the four sensory
dimensions for an input object.

The linguistic context input consists of a question of the form what size is it?, what
color is it ?, or what is it?, each question represented by a separate unit in the linguistic
context layer of the network. (Four units are shown in the figure.) It is important to

2We have no reason to believe, however, that the conclusions we reach will not generalize to other
representational schemes. An alternative, for example, is a variant of localized encoding in which
units on either side of the most highly activated unit are also activated, in inverse proportion to their
distance from the activated unit. A version of the present network using such a scheme trained on
the data generated for Experiment 3 below exhibited the same advantage for compact over elongated
categories as was found with thermometer encoding.

10



note that, because the network is given no actual syntactic context, the noun context
(what is it?) is indistinguishable from the adjective contexts (what color is it ?, etc.) at
the start of training. In terms of the network’s architecture, there are just several equally
different linguistic context inputs that might be viewed as corresponding to noun, color,
size, and texture. There is no hierarchical organization of the adjective terms in the
architecture; that is, there is nothing that groups the adjectives as a class in opposition
to the nouns.

Critically, from the perspective of the network, there is also no distinction between
the input activation that corresponds to the object and that which corresponds to the
question. From the network’s point of view, there is just one input vector of 66 numbers
jointly specifying an event in the world in terms of the five perceptual dimensions and
the linguistic context input that co-occurs with the presentation of the object.

The hidden layer of the network compresses the input patterns into a smaller set of
units, 15 to 24 units in the experiments we report here.®> Thus at this level, the system
no longer has direct access to the input dimensions. This is an important aspect of
the architecture and an important theoretical claim. It means that input dimensions
that are distinct at input are not (at least not without learning) represented separately.
This aspect of the architecture is based on considerable research indicating that young
children have difficulty attending selectively to individual dimensions (Aslin & Smith,
1988) and on our past use of this architecture to model developmental changes in selective
attention to dimensions (Gasser & Smith, 1991; Smith, 1993). We will discuss more fully
the wider implications of this aspect of the network in the General Discussion.

The output layer consists of a single unit for each adjective and noun. A +1 ac-
tivation on an output unit represents the network’s labeling the input object with the
corresponding word. A -1 activation represents the network’s decision that the corre-
sponding word is inappropriate for the input object, and a 0 activation represents an
intermediate response, one that might be made if an object is described by the category
but that is not an appropriate answer to the linguistic input question, for example, if
“red” were the response to the question “what is it?” for a red dog.

3.2 The Learning Rule

The specific learning rule used operates as follows. During training, a target is associated
with each input pattern; this target represents the appropriate response to the input. In
ordinary back-propagation, each output unit receives a target on each trial. But, as noted
above, this is an implausible procedure, as it means that all possible responses which are
not appropriate are punished. Further, as noted above, not all wrong answers are wrong
in the same way and unlikely to be responded to the same way by parents. Accordingly,
we give the network feedback for only two sorts of words, the correct word and any
incorrect words to which the network has made a significant response. We defined a
“response threshold” for the word units, 0.05 in all of the experiments reported on here;
only activations above this threshold are treated as overt responses for which feedback

3Increasing the number of units in the hidden layer of the network both speeds up performance and
leads to improvement in the asymptotic level of performance.
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is possible. Further, the target for these explicit errors depends on the input as follows.

1. The target for a correct response is +1.

2. For a response which is not a correct label for the input object under any cir-
cumstances (e.g., “small” for a large, red object), the target for the corresponding
output unit is -1.

3. For a response which would be a correct label for the input object if it matched
the lexical dimension input (e.g., “large” for a large, red object when the input
question is “what color is it?”), the target for the corresponding output unit is 0.

4 Experiments

4.1 Experiment 1: Nouns vs. Adjectives in General

In Experiment 1, we investigate how this simple three-layer network simultaneously
learns many categories organized to be like nouns and to be like adjectives with respect to
the properties of shape, volume, overlap, and number of different categories. The central
question is whether their will be a noun advantage early in learning and whether, prior
to complete learning, the network will show partial knowledge that nouns and adjectives
are distinct classes of words.

4.1.1 Stimuli

The input to the network consisted of an object described on five perceptual dimensions
and the question accompanying the object. The input objects were instances of 30 possi-
ble categories. Each input object had a value for each of the five perceptual dimensions,
and each category was defined in terms of the range of values that its instances could
take along each of the dimensions. Twenty of these categories were organized to be
noun-like and 10 were organized to be adjective-like. Each noun was defined in terms
of a range of 1/10 of the possible values along each of the five input sensory dimen-
sions. Each adjective category was defined in terms of a range of 1/5 of the possible
values along one of the input dimensions and any value along the other four. Thus each
noun spanned 1/10 x 1/10 x 1/10 x 1/10 x 1/10 = 0.00001 of the multi-dimensional
space of all possible categories whereas each adjective spanned 1/5 of the space. Table
1 shows ranges of possible values on the five dimensions for two of the noun and three
of the adjective categories. Note that the noun categories may overlap on one or more
dimensions (dimensions 2 and 5 in the example categories). No noun categories overlap
completely, however. This is not so for the adjective categories. In Table 1, adjective 1
overlaps with both adjective 2 and 3 because it is possible to create an object which is
an instance of both adjective 1 and adjective 2 or both adjective 1 and adjective 3.
The ten adjective categories were organized into five lexical dimensions by association
with the specific input dimension whose values were constrained within the adjective
category and by association with a specific linguistic context input, e.g., “what size

12



‘ H Perceptual Dimensions

Noun1||09<v;<1|0<v<01| 0<wv3<0.1 0<wvs4<0.1 |0<wv;<0.1
Noun 2 || 0<v1 <01 |0<v3<0.1]04<v3<05]04<v,;<05]0<w;<0.1

Adj 1 any any any 0.8 <y <1 any
Adj2 ||0< v <0.2 any any any any
Adj3 |08 <v <1 any any any any

Table 1: Experiment 1: Ranges of Values on Perceptual Dimensions for 5 Input
Objects. vy, etc. represent the values on the five dimensions. Each range is expressed in
terms of proportions of the distance from the minimum to the maximum value.

is it?” Thus the ten adjectives were structured into five dimensions each with two
contrasting terms.? In Table 1, adjectives 2 and 3 belong to the same lexical dimension.

For each training instance, the inputs were generated as follows. First an output
category was selected at random from the set of 30 possible outputs (the 20 nouns and
the 10 adjectives). The selection of the relevant output determined the linguistic context
input. Then for each of the five perceptual dimensions, a possible value was picked at
random consistent with the selected output.

The linguistic context input consisted of the pattern representing a question that
would be appropriate for the selected category, each question corresponding to a lexical
dimension. For example, if the category was big, the input unit representing what size
it is? was turned on (that is, its output was set to 1.0), and the other linguistic context
units were turned off. If the category was dog, the input unit representing what is it?
was turned on, and the other linguistic context units were turned off.

Because there was randomness in the selection of output categories and corresponding
input objects, because the input objects varied continuously, and because the targets
depended in part on the network’s response, the network was never trained more than
once on a particular input-target pair.

4.1.2 Method

On each training trial, the network was presented with an input (object plus linguistic
context), generated as just described, and an appropriate target on the output. The
weights in the network, other than those feeding output units for which no targets were
available, were then adjusted according to the back-propagation algorithm.

Following each presentation of 1000 input patterns the network was tested on 500
novel inputs generated in the same fashion as the training patterns. There are several
options for evaluating the network’s performance. We chose to look only at the output
unit with the highest activation, unless this unit’s activation was not above the response
threshold, in which case the network was viewed as not making any overt response at
all. Our assumption was that production processes not modeled in our network would

4As we will see in subsequent experiments, the noun advantage in the network does not depend on
there being only two terms for each adjective dimension.

13



force the system to select one word over all of the candidates which might be activated.
Thus only the most highly activated output unit was relevant. For each test input,
following activation of the network it was determined whether the output unit with the
highest activation was above the response threshold and whether that unit corresponded
to the appropriate word. Performance for each category of word was measured as the
proportion of test trials for which this was true.

4.1.3 Results

Figure 5 shows the learning rates for adjectives and nouns in this experiment. The data
shown are averages over 10 runs with different initial random weights on the network’s
connections. The smaller and more compactly shaped noun categories are learned much
faster than the larger and more slab-like adjective categories (p < .001°). Performance on
the nouns is close to perfect by the 2000th training trial. Performance on the adjectives
continues to improve, but never reaches the level of the nouns.®
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Figure 5: Experiment 1: Nouns vs. Adjectives. Performance is the proportion of test
items for which the highest overt response was correct. Responses are averaged over 10 separate
runs of the network.

We also asked whether in learning these categories, the network showed any implicit

knowledge of lexical categories. First, does the network develop a distinction between
nouns and adjectives as a class? Second, does the network develop a distinction between

5For statistical tests here and in Experiments 2-5, we treated each run of the network as a separate
subject.

6 An initial difference in learning but ultimately equal and near perfect learning of both nouns and
adjectives is achieved with larger hidden layers.
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0 Training Patterns 1000 Training Patterns
Incorrect output | Noun Context ‘ Adj Context | Noun Context ‘ Adj Context
Nouns .66 34 .65 .35
Adjectives .70 .30 37 .63

Table 2: Experiment 1: Within- and Between-Part-of-Speech Errors. Figures repre-
sent the proportion of incorrect overt responses in different part-of-speech categories.

different dimensional terms, analogous to knowing, for example, that wet and dry are
attributes of one kind and that rough and smooth are attributes of another kind? These
are important questions because children show clear evidence of the first distinction in
their early errors but not the second distinction (see Carey, 1994; Smith, 1984; Smith &
Sera, 1992; but see Backscheider & Shatz, 1993).

To answer the first question, we defined “within-part-of-speech errors” as the pro-
portion of cases with an incorrect response (above threshold) for which the response was
the correct “part of speech” (adjective or noun). Table 2 shows the proportion of within-
and between-part-of-speech errors at the start of learning and after 1000 training trials.
At the start of learning when the network knows nothing, the relative frequency of noun
and adjective responses (2:1) corresponds to the relative number of noun and adjective
output units (2:1) and is unrelated to the linguistic context input. However, as learning
progresses, the character of the error becomes associated with the linguistic input that
specifies the class of possible answers. After 1000 training trials, when the network still
has not yet fully acquired the adjective terms, the network shows implicit knowledge
that all the adjectives form a class.

To answer the second question, we defined “within-dimension errors” as the propor-
tion of cases in which adjective questions received incorrect adjective responses and the
response was on the right dimension. Noun questions and noun responses to adjective
questions did not contribute to this measure. At the start of training, such within-
dimension errors were rare, occurring .08 of the time. The frequency of within-category
errors increased with training, reaching a maximum of .23 of the time after 2000 trials.
Thus the network shows little implicit knowledge of which terms refer to attributes on
the same dimension.

4.1.4 Discussion

The central result of this simulation is that a simple connectionist network when simul-
taneously trained on adjective-like and noun-like categories learns the nouns faster, just
as children do. Yet this difference is not due to any built-in preferences on the part of
the network nor to any pre-training representation of a difference between nouns and
adjectives. It is due entirely to the similarity structure inherent in the learning task —
that is, to the nature of the categories which the network learns and the linguistic input
which specifies which of several classes of overlapping categories is the relevant one. In
brief, a learner can show a marked advantage for the learning of one kind of category over
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another without any built-in distinction between them. The developmental precedence
of nouns over adjectives in children thus need not derive from a priori conceptual dis-
tinctions, as commonly assumed, but rather from quite general similarity-based learning
mechanisms.

During the course of learning, the network, like young children, also exhibits a struc-
tured pattern of errors — dimensional terms are confused with each other and not with
nouns. This distinction emerges as a consequence of simultaneously learning not a single
adjective class but several different adjective categories. The most likely possibility is
that this is accomplished by the rapid learning of noun categories. That is, what the
network “really knows” may essentially be that adjectives are “not nouns.” The impli-
cation is that this may be all that young children know too (see Smith, 1995 for a similar
suggestion based on empirical evidence from children). The network did not show strong
learning of the connection between pairs of terms on a single dimension. This is also
consistent with the evidence from children. With the exception of color terms, between-
dimension rather than within-dimension confusions characterize children’s initial errors
(Backscheider & Shatz, 1993; Carey, 1994; Smith & Sera, 1992).

This experiment thus demonstrates the viability of a similarity-based approach to
the noun advantage in children’s early lexical acquisitions. In the following experiments,
we examine the specific contributions of the volume and shape of category extensions,
overlap and word-word associations in creating the noun advantage by examining un-
naturally structured classes of categories that differ only in their volume, shape, overlap,
or associations between linguistic context inputs and outputs.

4.2 Experiment 2: Category Volume

In this experiment, we investigate the role of volume differences. We create small cate-
gories and large categories that are both like nouns in being defined by similarities on
many dimensions. We ask whether smaller categories of this kind have an advantage
over larger ones.

4.2.1 Stimuli and method

Stimuli for this experiment were generated analogously to those in Experiment 1. There
were two types of categories, those which spanned relatively wide regions of the space of
all possible input objects and those which spanned relatively narrow regions. Both the
Small set and the Large set contained 18 words. In the Small set, each word was defined
in terms of a range of 1/6 of the possible values along each input dimension. Thus the
extension of each of these categories covered 1/6 x1/6x1/6x1/6 = 0.00077 of the space
of possible inputs. In the Large set, each word was defined in terms of a range of 1/3 of
the possible values along each input dimension, a total of 1/3x1/3x1/3x1/3 = 0.012
of the space of possible objects, that is, 16 times the size of the region occupied by
the extension of each of the categories in the Small set. Note that the volumes of
the two sets are closer than in the first experiment. The Large and Small categories
overlapped in the space of all possible categories. Two linguistic context inputs were
used to signal the relevant kind of category, one for which the Large-volume words were
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appropriate responses, the other for which the Small-volume words were appropriate
responses. Given the relatively simpler learning task with fewer overlapping categories,
we tested the network after every 500 training trials.

4.2.2 Results and discussion

Figure 6 shows the mean correct responses over 10 separate runs of the network. As can
be seen, outputs referring to Small categories are learned faster than the ones referring
to Large categories (p < .001). The difference is smaller than in Experiment 1 probably
because the ratio of Large-to-Small volume is smaller: 16 to 1 in this experiment, but
216 to 1 in Experiment 1.
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Figure 6: Experiment 2: Category Volume. Performance is the proportion of test items
for which the highest overt response was correct. Responses are averaged over 10 separate runs

of the network.
The network also readily learned the association between one linguistic context input

and the class of Large-volume outputs and between the other linguistic input and the
class of Small-volume outputs. As in Experiment 1, we examined “within-part-of-speech
errors;” here the Small-volume and Large-volume categories represented the two parts of
speech. At the start of learning, “within-part-of-speech” errors comprised (as expected
by chance) about half the errors for both Small-volume and Large- volume targets (.50
of the errors given a Small-volume targets and .45 of the errors given a Large-volume tar-
get). After 1000 training trials, however, within part-of-speech errors predominated, .88
of all errors given a Large-volume target and .81 of the errors given a Small-volume tar-
get. These results again demonstrate the role of word-word associations in the network’s
learning.
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In sum, this experiment shows that differences in the volume of a category, one of the
differences that exists between common nouns and dimensional adjectives is sufficient to
create an advantage in learning. This is not an unexpected result, given all that is known
about the importance of within-category similarity to similarity-based learning. But it
is a result that is consistent with the idea that developmental differences between the
early acquisition of nouns and adjectives could derive from processes no more complex
than those embodied by a three-layer connectionist network.

4.3 Experiment 3: Category Compactness

In this experiment, we investigate the effect of differences in the shape of category exten-
sions on learning when the volumes of the to-be-learned categories do not vary. Recall
that the shape or compactness of the category concerns the number of dimensions (or
directions in the space of all possible objects) on which there is a restricted range of
values within the category. In order to determine how important compactness, indepen-
dent of volume, is for learning by a simple associative device, we contrasted compact
noun-like categories with less compact adjective-like categories of the same volume.

4.3.1 Stimuli and method

The stimuli were generated as in Experiments 1 and 2. The 16 less compact “adjective-
like” categories were defined in terms of ranges of 2/3, 2/3, 1/3, and 1/12 of the possible
values along the four input dimensions used in this experiment. That is, one input
dimension, the one for which the possible within-category range was 1/12th of the input
dimension, was much more relevant than the other three in defining the category. Each of
the four dimensions played this role for four of the adjectives. Each of the more compact
noun-like categories was defined in terms of a range of 1/3 of the possible values along
each input dimension. The extensions of both the noun-like and adjectives-like categories
encompassed the same volume (1/81 of the space). The noun-like and adjective-like
categories overlapped in the space. As in Experiment 2, “noun-like” categories were
associated with a linguistic context input specifying noun targets and all the adjective-
like categories were associated with one linguistic input specifying adjective targets.

4.3.2 Results

Figure 7 shows the results of Experiment 3 over 10 runs of the network. The noun-
like categories that were organized by an equally restricted range of variation on all
four sensory dimensions were learned more rapidly than the adjective-like categories
in which the range of variation on some dimensions was wide and on others narrow
(p < .001). In other words, evenly compact categories are more rapidly learned than
elongated ones, a difference which again favors the basic-level nouns children learn early
over the dimensional adjectives that they learn later. We also assessed the association
of noun and adjective outputs with the two different linguistic inputs by measuring
within- and between-category errors. At the start of learning, within category errors
were at chance; the proportions of all errors (above threshold responses) that were within
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syntactic category were .45 and .53 for nouns and adjective respectively. After 2000
trials, the proportions of within-category errors were .85 for both nouns and adjectives.
Given that the input specified two categories, this result is not surprising but it does
demonstrate again the learning of word-word associations and their potential role in
generating structured patterns of errors.
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Figure 7: Experiment 3: Category Compactness. Performance is the proportion of
test items for which the highest overt response was correct. Responses are averaged over 10
separate runs of the network.

4.4 Experiment 4: Linguistic Associations

In Experiment 1, and we believe in the labeling tasks faced by young children in world,
noun and adjective categories differ in their volume, compactness, and in their associ-
ation with with specific linguistic contexts. In this fourth experiment, we ask how the
association between lexical dimensions in the input and the specific adjectives that com-
prise the output contribute to the noun advantage. We do this by creating two classes of
words whose extensions did not differ in volume nor shape. Each category was organized
principally by variation along one input dimension. Four adjective-like categories were
defined by associating all categories organized by one input dimension (e.g., color or size)
with the same linguistic context unit. Thus there were four adjective categories associ-
ated with four linguistic inputs specifying the relevant object dimension. The “noun”
categories were defined by taking the very same categories (each organized by one input
dimension) and associating them with a single linguistic context input. Thus we ask
whether it helps or hurts in learning the very same categories to have linguistic inputs
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specifying subsets of outputs or to have no linguistic inputs that specify subclasses of
outputs. Because the linguistic context inputs in the first case also specify the relevant
dimension, we call them “lexical dimensions.”

4.4.1 Stimuli and method

As before, stimuli for this experiment were generated randomly, given the constraints
which defined each of the categories. Asin Experiment 1, adjectives were organized along
lexical dimensions, specified by the most relevant input dimension and the linguistic
context input. In this case, there were four lexical dimensions, one each for the four
input dimensions that specify the presented objects.

Unlike in Experiment 1, however, the adjective and noun categories were identical in
every other way; in fact, the same set of 16 categories was used for the 16 nouns as well
as the 16 adjectives. For all categories a single sensory dimension was most relevant;
that is, the range of variation possible along that dimension was considerably narrower
than on the other three dimensions. For example, one adjective category was defined in
terms of ranges spanning 2/3, 2/3, and 1/3 of three of the input dimensions and 1/12 of
the relevant dimension, and one of the noun categories was defined in exactly the same
way. Whereas the noun and adjective categories overlapped completely (since they were
identical categories), there was no overlap within the noun and adjective classes. This is
necessary for the condition with no linguistic context specifying the lexical dimensions;
without such linguistic input, it would be impossible to learn overlapping categories.
Thus in this experiment, the only factor distinguishing the two classes of outputs is the
presence of linguistic contexts associated with subsets of words and specific perceptual
dimensions.

4.4.2 Results

Figure 8 shows the results of this experiment over 10 separate runs. There is an ad-
vantage for words associated with specific lexical dimensions (p < .001). Thus, rather
than adding complexity to the learning task, linguistic input dimensions, in the absence
of category overlap, provide redundant information about category identity that aids
learning.

The network again readily formed two “syntactic” categories presumably by asso-
ciating the class of words for which there were no lexical dimensions in the linguistic
context with the one linguistic context specifying that class. At the start of learning, the
network’s errors were distributed equally among the noun-like set and adjective-like set
of outputs; the proportion of within class (above threshold) errors were .47 and .52 re-
spectively. After 4000 trials, however, errors were predominantly from within the proper
“part of speech”; when the correct output was from the noun-like set, the network erred
by responding with another item from that set .82 of the time and when the correct
output was from adjective-like set, the network erred by responding with another item
from that set .84 of the time. With these non-overlapping categories, the network also
made within-dimension errors for the adjectives. These were .18 at the start of learning
and .86 after 4000 trials.
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Figure 8: Experiment 4: Lexical Dimensions. Performance is the proportion of test items
for which the highest overt response was correct. Responses are averaged over 10 separate runs
of the network.

The principal result from this simulation is that, all other things being equal, learning
subcategories of associated questions and responses provides an advantage.

4.5 Experiment 5: Category Overlap

One aspect of Experiment 4 is highly artificial, however. In the world, lexical dimensions
are tied closely to the massive overlap of adjective categories. Far from providing redun-
dant information about category identity, lexical input (“what color is it?”) functions
to pick out one label true of the specific object (e.g., red) from a large set of other labels
also true of that same object (big, furry, wet, dog). In Experiment 5, we investigated
the effect of category overlap in the context of lexical dimensions.

4.5.1 Stimuli and method

We defined categories in this experiment analogously to those in Experiment 4. The
extension of each category encompassed 1/64 (1/2 x 1/2 x 1/2 x 1/8) of the representa-
tional space and thus was constrained principally on one of the four object input dimen-
sions. Sixteen overlapping categories and 16 non-overlapping categories were defined.
Four categories within each set were restricted in their range of variation principally
on one of the four input dimensions. We trained separate networks to learn the over-
lapping and non-overlapping categories. For the overlapping categories, four linguistic
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context inputs specified the relevant input dimension and the subclass of outputs. In the
non-overlapping case, four linguistic inputs provided redundant information about sub-
classes of outputs and thus were not necessary to distinguish a correct from an incorrect
category.

4.5.2 Results

As can be seen in Figure 9, the non-overlapping categories were learned considerably
faster than the overlapping categories (p < .001). Even in the context of disambiguating
lexical dimension inputs, overlapping categories are more difficult to learn than non-
overlapping ones. Since lexical dimensions in the linguistic context favor adjectives, but
overlap (along with volume and compactness) favors nouns, these results are consistent
with the idea that the developmental trajectory observed in children may arise from a
consortium of differences between the associative structure of nouns and adjectives that
jointly but not necessarily singly favor nouns.
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Figure 9: Experiment 5: Category Overlap. Performance is the proportion of test items
for which the highest overt response was correct. There were two separate runs of the network,
one for each condition.

4.6 Experiment 6: Emergent Syntactic Categories

In all of the experiments we have described, there are two classes of categories to be
learned, nouns and adjectives, differing in one or more ways. The task of the network
is to learn the categories, and we have shown how certain differences between classes of
categories can affect the rate of and ultimate level of learning. The network’s task is
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not, however, to learn that there are two classes of categories and to discover how these
classes are distinguished. Ultimately children do learn to make this distinction. Does
our simple model have anything to say about how this is accomplished?

While the network starts the task without the knowledge that there are two classes
of categories, it does have access to a much more direct indication of the distinction: the
linguistic contexts associated with the two classes of words. More precisely, what these
inputs tell the network is simply that there is a distinction to be made. But does the
network use the linguistic context inputs in this way? The explicit task of the network
is to map input objects, accompanied by linguistic contexts, onto one label or another.
However, if the linguistic context is informative for this task, then we would expect
the network to also learn to associate particular contexts with particular words. These
associations, in a sense, would constitute the beginnings of syntactic categories. In this
final experiment, we ask what the network can learn when the meta-categories associated
with specific linguistic inputs, that is, noun and adjective, are more arbitrarily defined
than the classes of categories thus far examined. If noun and adjective are just arbitrary
collections of categories, the network will have to rely on the linguistic context input if
it is to learn anything about these meta-categories.

4.6.1 Stimuli and method

As before, stimuli for this experiment were generated randomly, given the constraints
which defined each of the categories. Two classes of categories (noun and adjective)
were defined that were identical with respect to all of the variables of interest (volume,
compactness, lexical dimensions, overlap). They differed only in terms of where the
member categories were located in the representational space. The categories, 18 in each
class, were defined in such a way that in the representational space, each noun category
was surrounded by adjective categories and vice versa. The pattern of noun and adjective
categories resembled a multi-dimensional checkerboard. Thus at the level of the meta-
categories, there was no generalization whatsoever to be made about the nature of the
member categories or the particular regions associated with nouns or adjectives. In a
sense, the meta-categories had no semantics associated with them. Each category took
up .003 of the space; this left uncategorized regions of representational space separating
adjacent categories. There was no overlap between categories. As in experiments other
than Experiment 1, there were four input dimensions defining the perceptual properties
of the object, but in this case, there were only two linguistic context inputs, one for one
class of words and the other for the second class.

Asin all of the experiments, the network was trained on randomly generated instances
of the categories. In this case, the network was tested, however, on a set of 18 pre-defined
object input patterns which did not belong to any of the noun or adjective categories;
that is, these inputs fell in the gaps between the categories which the network had been
trained on. Each of these 18 patterns was tested once together with a noun linguistic
context and once with an adjective linguistic context. The relevant dependent variable
in each case is the relative activation over the noun and the adjective output units. If the
network has begun to divide the words into meta-categories on the basis of the linguistic
context, we should see higher mean activations on the adjective units when the adjective
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Input Linguistic Context
Word Output || Noun | Adjective
Nouns -.103 -.165
Adjectives -.162 -.113

Table 3: Experiment 6: Noun and Adjective Response to Noun and Adjective
Linguistic Contexts. Figures show the mean activation of noun and adjective output units
in response to 18 object input patterns which belong to neither meta-category and which are
presented together with either noun or adjective linguistic contexts.

linguistic context is presented and higher activations on the noun units when the noun
linguistic context is presented.

4.6.2 Results

Table 3 shows mean output activations for the four cases.” There is a strong interaction
(p < .001%): output activations are higher for words in the meta-category corresponding
to the linguistic context than for words in the other meta-category. In other words,
even though the network cannot have generalized about what constitutes an adjective
and what constitutes a noun — there is no generalization to be made, after all — it has
made a distinction between the two meta-categories. The associations between linguistic
inputs (the two linguistic context units) and linguistic outputs (the 36 word units) are
sufficient to create two classes of words. We do not believe that the picture is this simple
for word learning in children because there are semantic generalizations to be made
concerning part-of-speech categories. In a more realistic setting, the straightforward
learning demonstrated in this experiment might serve to bootstrap the learning of the
relatively abstract semantic differences between the meta-categories. At any rate, the
implication is that the patterns of errors made by children that implicate distinct noun
and adjective categories could arise only from form-to-form associations.

5 General Discussion

We discuss the results of these experiments on two levels: First, we consider the network
and why it learned as it did. Second, we consider the implications of the present results
for our understanding of the origins of the noun advantage in children and for the nature
of children’s knowledge about the differences between nouns and adjectives.

TAll of the mean activations are negative because for this experiment, the network learns to strongly
inhibit all but the right response for each training instance, and for the test patterns, there is no “right”
response from among the trained categories.

8For the analysis of variance, there were two factors, input linguistic context (noun or adjective)
and average activation over output units by meta-category (noun or adjective). There was only one
“subject” (network run) in this experiment, but there were 18 instances of each of the four combinations
of the factors.
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5.1 The Network

We defined the categories on which the network was trained in terms of the properties
of the categories’ extensions (volume, shape, overlap) and in terms of the presence of
form-to-form associations between a linguistic context specifying the question asked of
the network and the linguistic outputs that were possible answers to those questions.
The network of course does not have direct access to any of these global properties
of the learning task. It simply receives one category example at a time and for each
modifies its weights in such a way that it has stored a composite record of the instances
of each category. The network in no sense stores category boundaries or anything like the
representations of category extensions we have used throughout this paper to visualize
the differences between nouns and adjectives.

Why then do factors such as shape and volume and overlap matter as they do?
Two factors are fundamental to the network’s performance: (1) the distance between
members of the same category relative to the distance between members of different
categories and (2) the degree of redundancy in the input.

Each input the network receives represents a point in its multi-dimensional input
space. Via the weights connecting the input layers and the hidden layer, the network
maps this point in input space onto a point in multi-dimensional hidden-layer space. In-
puts which are similar—close to each other in input space—will tend to map onto points
which are close to each other in hidden-layer space. Points in hidden-layer space in turn
are mapped onto points in category space via the weights connecting the hidden layer
and the output layer. Before training, these mappings will be random, depending on
the randomly generated initial weights. As training progresses, however, the weights in
the network take on values which permit regions in input space to be associated roughly
with the appropriate regions in category space. This involves some readjustment of the
regions in hidden-layer space associated with inputs. In particular, inputs belonging to
the same category will tend to map onto relatively compact regions in hidden-layer space
(Harnad et al., 1991). Each time the network is trained on an instance of a category,
the weights in the network are adjusted in such a way that that point in input space
tends to get assigned to the region in output space associated with the category. When
a test item is presented to the network, where it maps to in category space depends
entirely on where it is in input space, in particular, how far it is from previously trained
inputs. The input is implicitly compared to all of these inputs. Thus the network is an
instance of an exemplar-based model of categorization (e.g., Nosofsky, 1986). In these
models, it is the relative distance between an input and previously learned exemplars of
the different categories which determines the behavior of the system.

If a given input is likely to be as close to a previous member of another category
as it is to previously trained members of its own category, error will tend to be high,
and learning will take longer, requiring more examples of each category. More examples
result in a greater density of within-category examples which can compensate for the
nearness to a test input of distracting examples of other categories.

Category volume and compactness both relate to this relative distance measure. As
category volume increases and number of examples remains constant, density within
categories decreases: the average distance between members of each category increases.
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At the same time, the boundaries of different categories approach each other, so that for
a given example of one category, the nearest distractor becomes nearer. Thus increasing
volume leads to greater potential confusion between categories.

As category compactness decreases, we also see an increase in the average distance
between members of a category. Consider two extreme cases, a set of parallel “hyper-
slabs” which extend across the full range of values on all dimensions but one and a set of
evenly-spaced hyperspheres of the same volume as the hyperslabs. The average distance
between members of the same category is greater for the hyperslabs because they may
be arbitrarily far apart on all but one dimension. At the same time, the average dis-
tance between a member of one category and the nearest distractor in another category
is smaller for the parallel hyperslabs, since the boundary of the nearest other category
is found just across the narrow hyperslab-shaped gap separating the categories. Thus
decreasing compactness, like increasing volume, means greater difficulty because of the
potential confusion from examples of competing categories.

A further factor in category difficulty, though not as important in our results, is the
degree of redundancy in the input. If more than one input unit conveys information
about the category for an input pattern, then more network resources (weights) will be
dedicated to representing the input-to-category mapping than would be the case if only
one unit were relevant. In our experiments there is redundancy in all input patterns
because of the use of thermometer encoding. On a given sensory dimension, all units
to the “left” of a unit which is activated are redundant. However, in Experiment 4,
some categories, namely, those with lexical dimension input, had the benefits of more
redundancy than other categories. Recall that in this experiment, lexical dimensions
were not required to categorize inputs, which on the basis of sensory input alone were
unambiguous. Thus the redundant linguistic input gave the advantage to those cat-
egories for which it was available. Note, however, that while real adjective categories
tend to be distinguished in part by lexical dimensions, they also tend to overlap with one
another. When there is overlap, the lexical dimension is no longer redundant; rather, it,
in combination with the sensory input, is necessary for determining the category of the
input.

In sum, these two factors, (1) relative within- and between-category exemplar dis-
tances and (2) input redundancy, account for the results of our experiments. Interest-
ingly, a third potential factor, the extent to which a particular input sensory dimension
is relevant for a category, did not play a significant role. In Experiment 3, “adjective”
categories were defined in such a way that a single dimension mattered much more than
the other three. For “nouns”, on the other hand, each sensory dimension was equally
relevant. A learner with a propensity to selectively attend to particular sensory dimen-
sions might find the adjectives easier. Relevance of a single dimension for a category
conveys a disadvantage rather than an advantage for the network, and this result agrees
with what we find for children.

5.2 The Noun Advantage in Children

These simulations were motivated by the goal of explaining two facts well-documented
in the literature on children’s early word learning: (1) the fact that nouns labeling con-

26



crete objects are learned faster than the dimensional adjectives that label the perceptible
properties of those same objects and (2) the fact during the protracted course of learn-
ing dimensional adjectives, children seem to recognize that the dimensional adjectives
comprise a class in that they confuse adjective meanings but do not confuse noun and
adjective meanings.

The principal contribution of the present results is that they show that these two
facts can emerge from the simple effects of similarity-based learning and thus that they
do not demand an explanation in terms of prior conceptual knowledge of noun meanings
or the differences between nouns and adjectives. The argument for pre-linguistic no-
tions of the distinction between objects and their properties is often couched in terms of
arguments that “one cannot get something from nothing” (see, for example, Markman,
1989). These simulations demonstrate that one can get a lot from ordinary effects of sim-
ilarity and redundancy on learning — a noun advantage and proto-syntactic categories
that in terms of their outward manifestations, that is, performance, look very much
like the developmental trajectories of children learning common nouns and dimensional
adjectives.

In the remainder of this paper, we discuss the further contributions and limitations
of the research by addressing three questions: (1) Are the real nouns and adjectives that
children learn like the idealized nouns and adjectives presented to the network? (2) Does
the network instantiate a conceptual bias for noun-like meanings? and (3) Could the
simple associative effects between linguistic inputs and linguistic outputs be the basis
for a more conceptual understanding of the differences between nouns and adjectives?

5.2.1 Idealized versus Real Nouns

The nouns we sought to model are the common names for concrete objects, such nouns
as bottle, cup, mom, dog, bed, and cookie. The idea that the extensions of such nouns
are relatively small, compactly shaped, and non-overlapping has been offered repeatedly
in the literature (e.g., Rosch, 1973; Markman, 1989, Medin & Ortony, 1989). Further,
Rosch (1973b) has reported empirical evidence in support of these claims and Mervis
(1987) has presented evidence that when mature usage does not fit this characterization,
adults in their speech to children shift their use of nouns to keep the extensions compactly
shaped and non-overlapping.

However, there are other findings in the literature that might be interpreted as show-
ing that common names are not compact but are, rather, adjective-like in their emphasis
of a single dimension. These findings concern the so-called shape bias in early noun learn-
ing (see Smith, 1995 for a review). Specifically, in novel word learning tasks, when a
novel rigid object is named by a count noun, young children systematically generalize
the newly learned name to novel objects by their shape ignoring such properties as color
and texture. This shape bias in early noun learning fits well with Biederman’s (1987)
and Rosch’s (1973) earlier results showing that adults recognize common objects prin-
cipally by their shape. Do these results, then, suggest the real nouns learned by young
children are not compact but are rather like adjectives in being constrained principally
on one dimension. The evidence on the shape bias in early word learning is quite com-
pelling, but we believe the inference from this fact about the non-compactness of noun
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extensions is wrong.

First, the complete evidence on the shape bias does not suggest exclusive attention to
shape in children’s early word learning. Rather, children attend to shape when objects
are rigid but attend to texture and color when they are nonrigid, and even with rigid
objects, children attend to shape and texture when the objects have eyes (see Smith,
1995 for a review). Thus, the total pattern suggests that while young children often
emphasize shape in their early word generalizations, it is not to the complete exclusion
of other properties. Rather, children attend to other properties and shift attention
weights as a function of those properties. Second, although shape may be important
to determining membership in a specific category, for real categories (as opposed to
those used in artificial word learning tasks), other properties are also clearly predictive
of category membership. Thus dogs do not just have a characteristic shape, they have
characteristic colors, surface properties, and manners of movement. Thus, the extensions
of the nouns that children encounter are relatively compact. Finally, shape is not a
simple dimension but is composed of many sensory dimensions; constraints on the shape
of instances will thus make for more compact category extensions than constraints on,
for example, wetness or color. In sum, the extensions of the real nouns that children
learn early may not be hypercubes in the space of all possible objects, but all that we
know indicates that they are much more compact than dimensional adjectives.

5.2.2 A Conceptual Bias for Noun-like Meanings?

Our finding that the similarity relations within and among early-learned nouns and ad-
jectives may create the noun advantage over adjectives contrasts with the suggestion
that objects as opposed to their attributes are conceptually special (see, e.g., Gentner
& Rattermann, 1991; Markman, 1989). However, one might argue that a three-layer
network in which the hidden layer compresses the sensory input into one holistic rep-
resentation is one instantiation of how a whole-object conceptual assumption might be
implemented. From this argument, one might conclude that this network was “designed”
to learn easily about categories in which all instances are globally similar to each other
(and thus compact and small). Is this not, in a sense, a built-in bias for noun-like
categories?

By one interpretation of this question, the answer is a clear “yes.” The proposal
that noun categories are more “natural” than adjective categories and the proposal that
young children “assume” that words name things and not their properties are currently
unspecified in terms of the processes through which the naturalness of nouns or children’s
assumptions might be realized. This network offers one implementation of these ideas;
it shows just how nouns might be more “natural” and why very young children seem to
interpret novel words as having nominal meanings. Thus the results of these simulations
might be properly viewed as supportive of and an extension of proposals about young
children’s early biases and assumptions about word meanings.

But there is a second interpretation of the question of whether a noun-advantage was
built into the network that demands a clear “no.” It is true that representations at our
hidden layer holistically combine the input from the separate sensory dimensions. Con-
nectionist networks do not have to do this. For example, Kruschke’s ALCOVE network
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(1992) utilizes distinct dimension weights such that the network retains information
about distinct attributes at the hidden layer level. Given these differences, one might
expect that Kruschke’s network would learn adjective categories more easily than the
present one. This may be. However, the conclusion that our network is structured to
make the learning of adjectives hard is not warranted. It is not warranted because our
network learns single-dimension adjective categories easily, trivially fast when there is
only one relevant dimension and no overlapping categories. That is, when we presented
our network with the same kind of task that ALCOVE has been presented with — classi-
fying all inputs into two-mutually exclusive categories, each constrained by variation on
the same dimension (what might correspond to learning the categories BLACK versus
WHITE) — the network rapidly (in less than 500 trials) converged to a set of attention
weights that emphasize the solely relevant input dimension. In brief, it is not hard for
this network to learn adjective-like categories.

However, it is hard for this network to learn adjective-like categories when it must,
like young children, simultaneously learn noun-like categories that require attention
to many dimensions and multiple overlapping adjective categories that each require
attention to different dimensions. We conjecture that a similar difficulty might hold
even for models like ALCOVE when the task is the simultaneous learning of multiple
overlapping noun-like and adjective-like categories.

In sum, the ease with which the present network learns adjective categories on one
dimension when that is all that it has to learn indicates that the noun advantage is not
solely the product of the compression of dimensional information at the hidden layer.
Rather, the noun advantage appears to be a product of similarity-based learning and
the task of learning overlapping categories. Given this kind of learning device and this
set, of tasks to be learned, noun-like meanings are primary.

5.2.3 Learning the Categories “Noun” and “Adjective”

The general acceptance of the idea that young children distinguish between nouns as
name for things and adjectives as labels for the properties of things is based on the facts
of the noun advantage and the pattern of within-adjective confusions that characterize
children’s slow and errorful acquisition of dimensional terms. The simple network that
we have studied distinguishes nouns and adjectives in the very same way that young
children do: It learns noun categories faster than adjective categories and during the
protracted course of learning adjectives, its errors consist of confusing one adjective with
another and not of confusing an adjective with a noun. Thus, our network, like children,
“knows” that nouns and adjectives are different.

The processes that make up this “knowing” by the network, however, are not of
the kind one usually thinks of as knowledge about the different meanings of nouns and
adjectives. All that appears to be known when the network in Experiment 1 makes
these errors is (1) the noun categories, (2) the linguistic context that specifies nominal
outputs, and (3) the fact that the linguistic contexts that specify adjective categories
are not associated with nominal outputs. Apparently this is enough to get a behavioral
distinction between nouns and adjectives in the course of learning. The network knows
about nouns and ipso facto “knows” a class of items that are not nouns. The results
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remind us that the internal processes that comprise some external pattern of behavior
may be simpler than the external behavior itself.

The present network is a very simple model that leaves out much of what children
probably do know about nouns and adjectives. While our approach is unabashedly
grounded in the semantics of nouns and adjectives, we have tried to show in Experiment
6 how purely form-to-form learning can also play a role in the emergence of syntactic
categories. In fact learners appear to have access to a wealth of purely formal information
to guide them in learning, and a large body of recent work has focused on the extent
to which linguistic categories can be learned on the basis of distributional information
(Elman, 1990; Finch & Chater, 1992) or the formal properties of the words themselves
(Kelly, 1992). As in the present model, these approaches are statistical and associative;
in fact, many are implemented in the form of connectionist networks. However, given the
nature of the inputs and the restricted architecture, the present network obviously cannot
make use of the phonology of the words or of the detailed pattern of co-occurrences with
other words. We have only sought to demonstrate that syntactic categories can begin
to emerge as a kind of side-effect as the system learns to label objects. Note what
distinguishes these syntactic categories from the conventional ones, however; because
they are directly associated with objects and their properties, they have a semantic
force. Although this may not be what is usually meant by theorists who write about
children’s understanding of the differences between nouns and adjectives, this could be
pretty much what the differences amount to in the early stages of acquisition.

6 Conclusion

What is the difference between common nouns and dimensional adjectives that allows
children to acquire nouns more rapidly than adjectives? We could distinguish the two
categories in purely syntactic terms, with respect to the other categories with which they
co-occur. We could also distinguish them in terms of their function, as Markman (1989)
does; we carve up the world in useful ways with nouns and then resort to adjectives
when we need to distinguish members of the same nominal category along arbitrary
dimensions. But underneath all this might be a more mundane distinction, one based
on the tendencies of nouns and adjectives to delineate particular sorts of regions in
multi-dimensional perceptual space. Unlike the first two kinds of distinctions, this third
is one which is directly available to a relatively simple learning device, as we have shown
in this paper. Of course a child must eventually learn about more abstract functions and
about syntactic categories much richer than those examined here, but the distinction
based on the most accessible sort of information could provide a foundation for this later
learning.

References

Aslin, R. N. & Smith, L. B. (1988). Perceptual development. Annual Review of Psy-
chology, 39, 631-682.

30



Au, T. K. & Laframboise, D. E. (1990). Acquiring color names via linguistic contrast:
the influence of contrasting terms. Child Development, 61, 1808-1823.

Au, T. K. & Markman, E. M. (1987). Acquiring word meaning via linguistic contrast.
Cognitive Development, 2, 217-236.

Backscheider, A. G. & Shatz, M. (1993). Children’s acquisition of the lexical domain
of color. In What We Think, What We Mean, and How We Say it: Papers from
the Parasession on the Correspondence of Conceptual, Semantic, and Grammatical
Representations, Vol. 29, pp. 11-21. Chicago Linguistics Society.

Biedermann, I. (1985). Human image understanding. Computer Vision, Graphics, and
Image Processing, 32, 29-73.

Callanan, M. A. (1990). Parents’ description of objects: potential data for children’s
inferences about category principles. Cognitive Development, 5, 101-122.

Carey, S. (1978). The child as word learner. In Halle, M., Bresnan, J., & Miller, G.
(Eds.), Linguistic Theory and Psychological Reality. MIT Press, Cambridge, MA.

Carey, S. (1982). Semantic development: the state of the art. In Wanner, G. & Gleitman,
L. R. (Eds.), Language Acquisition: The State of the Art, pp. 139-195. Cambridge
University Press, Cambridge, MA.

Carey, S. (1994). Does learning a language require the child to reconceptualize the
world?. Lingua, 92, 143-167.

Clark, E. V. (1973). What’s in a word: on the child’s acquisition of semantics in his
first language. In Moore, T. E. (Ed.), Cognitive Development and the Acquisition
of Language. Academic Press, New York.

Dromi, E. (1987). Early Lezical Devlopment. Cambridge University Press, New York.
Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

Finch, S. & Chater, N. (1992). A hybrid approach to the automatic learning of linguistic
categories. In Aleksander, 1. & Taylor, J. (Eds.), Artificial Neural Networks, 2
Amsterdam. ICANN, Elsevier.

Gasser, M. & Smith, L. B. (1991). The development of the notion of sameness: a
connectionist model. In Proceedings of the Thirteenth Annual Conference of the
Cognitive Science Society, pp. 719-723 Hillsdale, NJ. Lawrence Erlbaum.

Gentner, D. & Rattermann, M. J. (1991). Language and the career of similarity. In
Gelman, S. A. & Byrnes, J. P. (Eds.), Perspectives on Language and Thought: In-
terrelations in Development, pp. 225-277. Cambridge University Press, Cambridge.

Gentner, D. (1978). On relational meaning: the acquisition of verb meaning. Child
Development, 48, 988—-998.

31



Gershkoff-Stowe, L. & Smith, L. B. (1996). Naming errors and emerging retrieval pro-
cesses: a study of early changes in lexical processing. Under review.

Harnad, S., Hanson, S. J., & Lubin, J. (1991). Categorical perception and the evolu-
tion of unsupervised learning in neural nets. AAAI Spring Symposium on Symbol
Grounding: Problem and Practice, Stanford, CA.

Huttenlocher, J. (1974). The origins of language comprehension. In Solso, R. (Ed.),
Theories in Cognitive Psychology. Lawrence Erlbaum, Potomac, MD.

Imai, M. & Gentner, D. (1993). What we think, what we mean, and how we say
it: papers from the parasession on the correspondence of conceptual, semantic,
and grammatical representations. In Proceedings of the Chicago Linguistic Society,
Vol. 29. Chicago Linguistics Society.

Jackson-Maldonado, D., Thal, D., Marchman, V., Bates, E., & Gutierrez-Clellen, V.
(1993). Early lexical development in Spanish-speaking infants and toddlers. Journal
of Child Language, 20, 523-549.

Keil, F. & Carroll, J. (1980). The child’s acquisition of “tall”: implications for an
alternative view of semantic development. Papers and Reports on Child Language
Development, 19, 21-28.

Kelly, M. H. (1992). Using sound to solve syntactic problems: the role of phonology in
grammatical category assignments. Psychological Review, 349-364.

Kruschke, J. K. (1992). ALCOVE: an exemplar-based connectionist model of category
learning. Psychological Review, 99, 22-44.

Macnamara, J. (1982). Names for Things: A Study of Human Learning. MIT Press,
Cambridge, MA.

Maratsos, M. (1988). Crosslinguistic analysis, universals, and language acquisition. In
Kessel, F. (Ed.), The Development of Language and Language Researchers: Essays
in Honor of Roger Brown, pp. 121-152. Lawrence Erlbaum, Hillsdale, NJ.

Markman, E. M. & Hutchinson, J. E. (1984). Children’s sensitivity to constraints on
word meaning: taxonomic vs. thematic relations. Cognitive Psychology, 16, 1-27.

Markman, E. M. (1989). Categorization and Naming in Children: Problems of Induction.
MIT Press, Cambridge, MA.

Medin, D. & Ortony, A. (1989). Psychological essentialism. In Vosniadou, S. & Ortony,
A. (Eds.), Similarity and Analogical Reasoning, pp. 179-195. Cambridge University
Press, New York.

Mervis, C. B., Mervis, C. A., Johnson, K. E., & Bertand, J. (1992). Studying early
lexical development: the value of the systematic diary method. In Rovee-Collier,
C. & Lippsitt, L. (Eds.), Advances in Infancy Research, 7, pp. 291-379. Ablex,
Norwood, NJ.

32



Mervis, C. B. (1987). Child-basic object categories and lexical development. In Neisser,
U. (Ed.), Concepts and Conceptual Development: Ecological and Intellectual Factors
in Categorization. Cambridge University Press, Cambridge.

Naigles, L. G. & Gelman, S. (1995). Overextensions in comprehension and production
revisited: preferential-looking in a study of dog, cat, and cow. Journal of Child
Language, 22, 19-46.

Nelson, K. (1973). Structure and Strategy in Learning to Talk. No. 149 in Monographs
of the Society for Research in Child Development. University of Chicago Press,
Chicago.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization rela-
tionship. Journal of Fxperimental Psychology: General, 115, 39-57.

Plunkett, K., Sinha, C., Mgller, M. F., & Strandsby, O. (1992). Symbol grounding or
the emergence of symbols? vocabulary growth in children and a connectionist net.
Connection Science, 4, 293-312.

Rosch, E. (1973a). Natural categories. Cognitive Psychology, 7, 573-605.

Rosch, E. (1973b). On the internal structure of perceptual and semantic categories. In
Moore, T. E. (Ed.), Cognitive Development and the Acquisition of Language, pp.
111-144. Academic Press, New York.

Schyns, P. G. (1992). A modular neural network model of concept acquisition. Cognitive
Science, 15, 461-508.

Smith, L. B. & Sera, M. (1992). A developmental analysis of the polar structure of
dimensions. Cognitive Psychology, 24, 99-142.

Smith, L. B., Jones, S., & Landau, B. (1992). Count nouns, adjectives, and perceptual
properties in children’s novel word interpretations. Developmental Psychology, 28,
273-286.

Smith, L. B. (1984). Young children’s understanding of attributes and dimensions: a
comparison of conceptual and linguistic measures. Child Development, 55, 363-380.

Smith, L. B. (1993). The concept of same. In Reese, H. W. (Ed.), Advances in Child
Development and Behavior, Vol. 24. Academic Press, New York.

Smith, L. B. (1995). Self-organizing processes in learning to learn words: development
is not induction. In Basic and Applied Perspectives on Learning, Cognition, and
Development, Vol. 28 of The Minnesota Symposium on Child Psychology, pp. 1-32.
Lawrence Erlbaum Associates, Marwah, NJ.

Snow, C. E. (1977). The development of conversation between mothers and babies.
Journal of Child Language, 4, 1-22.

33



Taylor, M. & Gelman, S. A. (1988). Adjectives and nouns: children’s strategies for
learning new words. Child Development, 59, 411-419.

Waxman, S. R. (1994). The development of an appreciation of specific linkages between
linguistic and conceptual organization. Lingua, 92, 229-250.

Wood, D. J. (1980). Teaching the young child: some relationships between social inter-
action, language, and thought. In Olson, D. R. (Ed.), The Social Foundations of
Language and Thought. Norton, New York.

Woodward, A. L., Markman, E., & Fitzsimmons, C. M. (1994). Rapid word learning.
Developmental Psychology, 30, 553-566.

34



