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Abstract

A recent study by Sa�ran and colleagues (1996)
has demonstrated that young infants have a striking
ability to rapidly learn the statistical relationships
present in sequences of syllables. Eight-month-olds
were able to distinguish three-syllable \words" that
they had heard previously in a stream of syllables
from those that they had not. Since the only ev-
idence available in the input stream is the relative
transition probabilities between syllables, the babies
have apparently learned to distinguish the probabili-
ties between syllable within words from those between
words. In this paper we propose a neural network
model which simulates the behavior of the babies in
the experiment. The output layer of the network con-
sists of units responding to sequences of syllables, and
after training, these units are more highly activated
following a word sequence than a non-word sequence.
The model also o�ers an account of how this behavior
relates to segmentation and to the learning of more
abstract, grammatical regularities in the input.

Background

A recent study by Sa�ran and colleagues (1996)
demonstrated that young infants have a striking
ability to rapidly learn the statistical relation-
ships present in sequences of syllables. Eight-
month-olds were �rst presented a two-minute
long sequence of syllables in which four three-
syllable \words" were concatenated together in
random order. Later the babies were tested on
word and non-word sequences of three syllables,
and the results indicated that they clearly distin-
guished the two categories. Since the only evi-
dence available in the input stream was the rela-
tive transition probabilities between syllables, the
babies had apparently learned to distinguish the
probabilities between syllables within words from
the probabilities between syllables across word
boundaries. This ability to �nd words in the in-
put using statistics will obviously come in handy
as the babies are faced with learning real lan-
guage.
What sort of mechanism could accomplish this

task? In this paper we propose a neural network
model which simulates the behavior of the babies
in the experiment and which o�ers an account of
how this behavior relates to segmentation and to

the learning of more abstract, grammatical regu-
larities in the input.

The Task

Sequences

In Sa�ran et al.'s experiment, the infants are sen-
sitive to di�erences in transitional probabilities
between syllables. A model with this sensitiv-
ity must have a means of dealing with patterns
in time. Most neural networks which deal with
sequential patterns accomplish this through the
use of time delays on some of the connections
in the network. In this way units can respond to
the activations that other units had at times in
the past, giving the network a form of short-term
memory. We will assume that the elements of
sequences are evenly spaced and that the delays
are multiples of these primitive intervals, which
we will refer to as \time steps." Time-delay con-
nections permit a network to transform short se-
quences, those within the capacity of the short-
term memory, into static patterns. For example,
if a network has a layer of units which are con-
nected by delays of 0, 1, and 2 time steps to the
input units, that layer can represent sequences
of 2 or 3 elements as static patterns because it
has access to the state of the input units over 3
succeeding time steps. Longer sequences in such
a network would be transformed into sequences
of static subsequence pattern chunks, each the
length of the short-term memory.

Segmentation

The speech perception system develops in infants
in order to enable the segmentation of the audi-
tory input stream into words (Jusczyk, 1997), and
there is evidence that the basic units they have to
work with are syllables (e.g., Jusczyk & Derrah,
1987). While the babies in Sa�ran et al.'s experi-
ment were not performing any sort of explicit seg-
mentation of the strings of syllables, sensitivity
(and attention) to the syllable-to-syllable transi-
tion probabilities may contribute to the sort of
segmentation which will be required later on for
processing sentences. The boundaries between
words would correspond to points where the tran-
sition probabilities between neighboring syllables
are relatively low. Thus, we would argue, there



should be a means of tying together the mecha-
nism which learns the statistical properties of the
input and the mechanism which segments the in-
put.
Segmentation of an auditory or visual scene re-

quires that di�erent regions in the scene become
associated with one another. That is, a mech-
anism that performs segmentation must have a
way of solving the binding problem, the prob-
lem of tying together subgroups of features in
short-term memory when more than one \object"
is present in the scene. In a simple neural net-
work, the activation of a collection of units repre-
senting object features represents only the pres-
ence of those features, not how they are grouped
together as distinct objects. Some recent network
models solve the problem through the use of some
form of synchronization or alignment (Hummel &
Biederman, 1992; Shastri & Ajjanagadde, 1993;
Sporns, Gally, Reeke, & Edelman, 1989). Units
in such a network are out�tted with a dimension
of variability in addition to activation, and co-
incidence along this dimension represents \same
object." We will refer to this additional dimen-
sion as the \binding dimension." For the seg-
mentation of a sequence of syllables by such a
network, the units representing each word would
need to be aligned with one another and to be out
of alignment with the units representing neigh-
boring words.
In the following section we describe the rele-

vant features of Playpen, a neural network archi-
tecture which handles sequential patterns using
delay connections and which solves the binding
problem with a separate binding dimension. We
then discuss a simulation of Sa�ran et al.'s ex-
periment within the Playpen framework. Finally
we consider some implications of the model for
the acquisition of the segmentation of speech by
infants.

The Model

Units

Playpen (Colunga & Gasser, 1998; Gasser & Col-
unga, 1998) is a neural network architecture of
the generalized Hop�eld type (Hop�eld, 1984;
Movellan, 1990) which is designed to represent
and learn relational knowledge and to deal with
simple sequential patterns. Here we discuss only
those features of Playpen which are relevant for
the simulation of Sa�ran et al.'s experiment.
To deal with the binding problem, some units
in Playpen vary with respect to their relative
phase angle, a quantity ranging from 0 to 2�.
Relative phase angle plays the role of the binding
dimension in the network. Each micro-object
unit (MOU), representing an object feature,
has a relative phase angle, and when a group
of MOUs settles to a state in which they are all
activated and have similar relative phase angles,
the network has implicitly assigned the features

represented by those units to a single object in
the world. Similarly, when MOUs are out-of-
phase with one another, the features represented
by those units are implicitly treated as belonging
to di�erent objects.

Connections

As in other neural networks, the sign and mag-
nitude of a weight on a connection have an e�ect
on the activation of the receiving unit. Unlike
most other neural networks, the sign and magni-
tude of the weight also have an e�ect on the rela-
tive phase angle of the receiving unit. Alongside
its activation function, each unit has a coupling
function which de�nes this e�ect. All else being
equal, the sending unit attracts the phase angle
of the receiving unit via a positive connection and
repels the phase angle of the receiving unit via a
negative connection.
In order to deal with patterns in time, each con-

nection also has a delay associated with it. The
network runs in discrete time, with one time step
for each input event (one syllable in the case of
the simulations reported here). During each time
step the network is allowed to settle: the units in
the network repeatedly update their activations
and phase angles until the state of the network
stabilizes.
Connections with delay 0 respond in the usual

fashion. A connection with delay d > 0 causes
the unit at the receiving end to respond to the
activation that the unit at the sending end had d
time steps before. As shown by Kleinfeld (1986)
and others, a Hop�eld network augmented with
delay connections can learn to reproduce the se-
quences that it is trained on.

Learning

Learning in Playpen, as in most other neural net-
works, is Hebbian. Because a network may have
hidden units, however, simple Hebbian learning
often does not su�ce; instead contrastive Heb-
bian learning (Movellan, 1990) is used.1 Learn-
ing takes place in two phases. During the positive
phase, the input units are clamped to a pattern
sequence, the network is allowed to settle follow-
ing each pattern element, and learning is Heb-
bian; that is, the change in weight on each con-
nection for each pattern element is proportional
to the product of the activations of the connected
units. During the negative phase, no units are
clamped, the network is allowed to repeatedly set-
tle for the length of a typical pattern sequence,
and learning is anti-Hebbian; that is, the change
in weight on each connection is proportional to
the negative of the product of the activations of
the connected units. When the training patterns

1As originally formulated by Movellan (1990), con-
trastive Hebbian learning is a supervised algorithm. We
have developed an unsupervised version of the algorithm,
and we consider only that version in this paper.



have been learned, the two changes cancel each
other out because the network's behavior in the
two phases is identical.

Simulation

We simulated Sa�ran et al.'s task using a Playpen
network structured as shown in Figure 1. The
Syllables layer consisted of simple units (units
with activation but no relative phase angle), one
for each of the 12 syllables in the experiment. The
Syllable units were connected to three Sequence
layers of MOUs, one each for the most recent syl-
lable and for the two syllables that occurred at
one and two time steps in the past. That is, the
Sequence layers had input connections with de-
lays of 0, 1, and 2 time steps, giving the net-
work an e�ective short-term memory of three
time steps. Within each Sequence layer there was
a separate unit for each of the 12 syllables. The
weights joining the Syllable and Sequence layers
were all positive and did not vary during train-
ing. There were trainable connections with delay
0 within and between all of the Sequence layers.
These connections were initialized with weights
of 0.0. Thus at the beginning of training, the
presentation of a sequence of syllables resulted in
a series of patterns in the Sequence layers, and
for each of these patterns, a single unit was acti-
vated in each Sequence layer. The activated units
represented the most recent syllable and the two
syllables preceding it. The relative phase angles
of these units showed no particular pattern be-
cause they had as yet no in
uence on each other.
The Sequence layers were completely connected

by trainable, non-delay connections to the Words
layer, consisting of 20 MOUs, with small initial
random weights. These units were also com-
pletely connected to one another with trainable
connections, initially with weights of 0.0. At the
beginning of training, the activation of a pattern
across the Sequence layers (a single activated unit
in each layer) resulted in a weak pattern of acti-
vation across the Word units. At this point, the
relative phase angles of the Word units showed
no particular pattern.
As in Sa�ran et al.'s experiment, there were

four distinct three-syllable \words." The words
were composed of 12 distinct syllables; each sylla-
ble appeared in only one word. Inputs to the net-
work consisted of sequences of four of these words.
In these sequences each word followed each other
word with equal probability. A sequence of syl-
lables was presented to the network by clamping
the units in the Syllables layer in sequence, with
one network time step for each syllable.
During training, we expected the Sequence

units representing words to be associated with
each other by positive weights because they co-
occurred frequently. This should lead these
groups of three units to tend to activate each
other and to align their relative phase angles.
Furthermore, we expected each of these three-

syllable sequences to be associated with a coher-
ent pattern in the units in the Words layer, and
the units in these patterns should also have syn-
chronized relative phase angles. Presented with
a 12-syllable sequence consisting of four words,
the network should respond with more activation
on the Words layer at the end of each word than
within words. Presented with sequences of three
syllables, it should respond with more activation
on the Word units when the sequences constitute
words than when they constitute non-words, and
the relative phase angles of the Word units should
align themselves as they are activated in response
to a word. Figure 1 shows an example of what we
expected at the end of a word sequence following
training. The three units on the Sequence layers
representing the last three syllables are in phase
with one another and in phase with the activated
units on the Words layer.
Training did result in the expected pattern

of weights on the trainable connections and the
expected response to sequences of words. The
trained network was tested on three-syllable se-
quences, either words from the training set or
non-words. Following each sequence, we recorded
the total activation of the Word units. This
was consistently higher following words than non-
words. (The average total activation of the
Word units following words was 1.05, while it
was only 0.3323 following non-words.) In addi-
tion, for each of the words, the activated Word
units consistently aligned their phase angles with
one another. (The average standard deviation
among the phase angles of units activated above
0.15 after the presentation of a word was only
0.0000244.)
Thus the network learned to respond di�er-

ently to transitions within words than to transi-
tions between words and to treat word sequences
as di�erent from non-word sequences. Word se-
quences not only resulted in greater activation at
the Words layer. They resulted in synchronized
patterns; that is, the network was treating se-
quences of syllables constituting words as units.

Conclusions and Future Work

We have shown how the model we described sim-
ulates the results of Sa�ran et al.'s task. In ad-
dition, it provides the basis for the segmentation
that is necessary for more complex tasks. For seg-
mentation to take place in a network that makes
use of synchronization as a segmentation mecha-
nism, the elements within each segment must take
on the same value on the binding dimension. This
is what we saw for the word sequences in our sim-
ulation. In addition, segmentation requires that
between the segments the elements di�er along
the binding dimension. This does not take place
in our simulation; the phase angles assigned to
each group of Word units as a sequence of words
is presented appear to be unrelated to one an-
other. However, we believe that the pressure to
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Figure 1: Playpen network for simulating Sa�ran et al.'s experiment.

perform this second aspect of segmentation would
come from another, higher-level task.

Such a task, for example, is that in the re-
lated experiment by Marcus, Vijayan, Bandi Rao,
and Vishton (1999). In this experiment, seventh-
month-old infants were presented with sequences
of three syllables separated by gaps. The se-
quences heard by each baby followed a partic-
ular pattern of similarity within the syllables, ei-
ther AAB, ABB, or ABA. For example, AAB se-
quences were sequences such as le le we and wi
wi je. Tested later on sequences of novel sylla-
bles, the babies clearly distinguished those which

obeyed the pattern they had been trained on from
those which did not. In describing their experi-
ment, Marcus et al. (1999) speak of each of the
syllables in their input sequences as \words," the
sequences themselves as \sentences," and the task
as a \grammatical" task, and they argue that
the mechanism required to solve this task is com-
pletely di�erent from that required to learn statis-
tical reguarities, as in Sa�ran et al.'s experiment.
In another paper (Gasser & Colunga, 1999), we
have described a simulation of Marcus et al.'s ex-
periment with a Playpen network. In addition
to the mechanisms in Playpen described here,



this simulation requiresmicro-relation units, a
means of explicitly representing relational knowl-
edge in a neural network.2 In this network, the
input consists of one-syllable Word units, each
of which takes on a particular phase angle in re-
sponse to built-in connections re
ecting similar-
ity between syllables. When the same syllable
(word) appears twice in a sentence sequence, the
activated Word unit has the same phase angle
each time, and the unit for the syllable which dif-
fers from the other two is out-of-phase with them.
Much as the network used in the present simula-
tion learns to associate the three-syllable word
patterns with patterns on the Words layer, the
network used to simulate Marcus et al.'s results
learns to associate the three-syllable sentence pat-
terns with patterns on a layer of Grammar units.
We believe that these two Playpen networks,

the one described in this paper and the one used
in simulating Marcus et al.'s experiments, repre-
sent two di�erent levels of language processing
and acquisition. At the lower level, it is statis-
tical correlations between speci�c syllable types
which de�ne the task. On the basis of these cor-
relations, it is possible to distinguish frequently
recurring sequences (words) from patterns that
either do not occur or are less frequent. At the
Words layer, this gives the system units which
can provide the input to a higher level. At this
higher level these units can be treated as di�er-
ent \objects" when they appear in sequences (the
di�erent \words" in Marcus et al.'s task). At the
higher level it is gross similarities between objects
(words) within sequences (sentences) which com-
plete the segmentation of the sequences and guide
learning.
Much remains to be done in tying together the

two mechanisms. Most importantly we will need
to show how the statistical properties of the task
guide the system in treating it as one or the other
type of problem; sequences of the type used by
Sa�ran et al. should lead to learning of one type,
while sequences of the type used by Marcus et
al. should lead to learning of the other type.
What we have described in this paper is a be-
ginning, however. Within a single general associ-
ationist framework | a simple settling network
augmented with delay connections, a binding di-
mension, and a means of representing relations
explicitly | we have modeled what appear to be
two very di�erent types of language acquisition
tasks.
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