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Abstract

A conventional view of object categories is that they rep-
resent correlations among sets of object features. In this
paper we present an analogous view of relational cate-
gories, the Micro-Relation Theory. On this view, rela-
tional categories such asON and HIT are built up out of
correlations among primitive relational features, which
we call micro-relations. The process of learning rela-
tional categories involves three phases, the learning of
the micro-relations within object dimensions, the learn-
ing of correlations between the micro-relations across di-
mensions, and the generalization from absolute to rela-
tive relations within dimensions. This paper focuses on
the first two phases. We describe an experiment demon-
strating the first phase of relational learning and a neural
network simulation of the experiment. We conclude with
a discussion of future work on the second and third phases
of relational learning predicted by the theory.

Grounding Object Categories
For an animal, an object is a cognitive achievement, the
outcome of a process that segments sensory/perceptual
input into regions as it attends to the sensory/perceptual
dimensions that have proven useful in making predic-
tions, dimensions such as color, texture, size, and (the
multiple dimensions that make up) shape. An object can
be seen in part as the co-occurrence of a set of values on
these dimensions, that is, as a feature vector.

Two sorts of generalizations about objects are possi-
ble. One singles out a range of values along a single
object dimension, treating all objects with that feature
as belonging to a one category for some purpose. Such
generalizations are often realized in natural language as
adjectives (Gasser & Smith, 1998). For example, the ob-
ject categoryRED groups together all objects with a par-
ticular range of values on theCOLOR dimension. The
generalization is that there is a set of objects of this type.
Typically more useful is a second type of generalization,
based on the discovery that certain features co-occur reg-
ularly. Categories in this second sense are bundles of
correlations of values along different object dimensions.
We will refer to these asobject feature correlations;
they usually take the form of nouns in natural language.
For example, the categoryAPPLE is characterized by a
particular shape, size, taste, smell, and texture. Cate-
gories of this type are valuable because of the inferences

(predictions) they permit; given a subset of the associ-
ated features, the system can predict values on the other,
correlating dimensions.

This view of objects and object categories is straight-
forward to implement within a simple connectionist
model. Each processing unit represents a range of val-
ues along a particular dimension. A pattern of activa-
tion across the units, that is, a vector of activation val-
ues, represents an object. That is, rather than being rep-
resented by an atomic symbol, an object isdistributed
across a set ofmicro-features. Categories can be learned
through unsupervised Hebbian learning, which strength-
ens the weights on connections between units which are
co-activated. The weights then represent correlations
across dimensions, the basis of correlational categories
such asAPPLE. Thus the matrix of weights after learning
encompasses all correlational categories, and each cate-
gory can be seen as a subset of the units which are mutu-
ally excitatory. Activation of some of these units causes
others to be activated or inhibited, representing inference
or prediction.

Grounding Relational Categories
Now let’s consider how we can similarly view relations
in terms of co-occurring features and correlations. Start-
ing again with object feature dimensions, a (binary) re-
lation instance is the co-occurrence ofpairs of feature
values on the object dimensions. Note that some dimen-
sions which may not be relevant for the identification of
the objects because they tend not to be stableare relevant
for relations, in particular, the location of the objects.

As with objects, there appear to be two sorts of re-
lational categories. One type is defined over a single di-
mension. Analogous toRED for objects, a particularpair
of values for two objects along a single dimension may
characterize a class of relation instances in the world.
For example, in some environment it may be the case
that red and blue objects tend to occur together. The
co-occurrence of red with blue objects is an example of
a primitivemicro-relation . Because a micro-relation is
relational, it already involves a correlation, a correlation
between values in two ranges along a single dimension
such asCOLORor SIZE. Thus we will also refer to micro-
relations assimple relational correlations. Note that
unlike primitive object features, micro-relations are not
normally labeled. There is no word in English, for ex-



ample, for the situation in which a red and a blue object
co-occur. Instead labels are often applied to an elabo-
ration of a micro-relation, arelative relational corre-
lation. For such a correlation, the object dimension in
question must be ordinal (for example,SIZE or DARK-
NESSrather thanCOLOR or SHAPE), and the relation ap-
plies to multiple pairs of values across the dimension.
Examples areDARKER andSAME SIZE.

Analogous to object feature correlations, we have a
second type of relational category: correlations between
relational features on different dimensions. Thus aLO-
CATION relational feature may co-occur with aSIZE re-
lational feature, for example, if an object of a particu-
lar size is on top an object of another size. We refer to
these ascomplex relational correlations. When such
relational feature correlations remain specific to partic-
ular values or ranges of values on the two dimensions,
they normally do not have associated linguistic labels.
But when the relations along one or both dimensions be-
come relative (HIGHER, SMALLER), we often do. Thus
for the relation we callsunsetin English several dimen-
sions seem to be relevant, including the movement of the
sun with respect to the horizon, the changing color and
apparent shape of the sun, and the changing color of the
western sky. An extremely important class of categories
involving complex relational correlations consists of re-
lational terms, such as the wordon. These represent cor-
relations between syntactic patterns, in particular the rel-
ative position of the noun phrase arguments of the rela-
tional term and semantic dimensions such as the relative
position of the referents of the noun phrases. Thus the
spatial relationON correlates with the syntactic pattern
associated with the English prepositionon. Note that for
complex relational correlations, it is necessary to spec-
ify which of the arguments in one relation corresponds
to which of the arguments in the other relation. Thus it is
the first of the two noun phrases in a phrase likethe book
on the tablewhich refers to the upper object and the sec-
ond which refers to the lower. (This is the main way in
whichondiffers fromunder.)

The next section spells out our claims about the three
phases in the learning of relations and describes a con-
nectionist implementation of the model.

Micro-Relation Theory

Phases in Learning Relations

Our main claim is that relations are built up out of micro-
relations, associations between specific features on two
object dimensions, and that the most important and easy-
to-learn relations involve complex relational correlations
(between micro-relations). There are three phases on the
way to full-blown relations.

1. The micro-relations themselves must be built up. In
the neural network implementation of the model each
is represented by a unit with initially weak weights
from the units representing the two object features.
These weights are strengthened if the unit is activated

in response to input patterns containing the associated
object values.

2. Once the micro-relation unit is sufficiently activated
by object feature input, it can be associated with an-
other micro-relation unit on another dimension, repre-
senting a complex relational correlation.

3. Once the system comes to explicitly represent or-
dering within an object feature dimension such as
LENGTH, it becomes possible to learn relative rela-
tional correlations such asLONGER.

Phase 1 must precede phase 2 because complex re-
lational correlations are formed micro-relations; hence
the micro-relation units must be sufficiently activated for
the weight that represent these correlations to be learned.
Phase 1 should also precede phase 3 because there is
nothing preventing relational learning from beginning
even before the dimensions themselves have been figured
out.

The Architecture of Relational Learning
Representing relation instances requires a way of distin-
guishing the different objects from one another, that is,
a way of binding together the features associated with a
given object. Thebinding problem, in one form or an-
other, has surfaced in many forms in recent years, and a
number of connectionist solutions have been proposed
(Hummel & Biederman, 1992; Hummel & Holyoak,
1997; Shastri & Ajjanagadde, 1993). Most of these so-
lutions, including the one we proposed in earlier ver-
sions of this model (Colunga & Gasser, 1998; Gasser &
Colunga, 2000), make use of a dimension in addition to
activation which characterizes network processing units,
with synchronization along this dimension representing
the binding of units. Here we propose a simpler solution,
one that makes use of copies of dimensions. The idea
is to treat relative position in space or time as a special
dimension, one that maps directly onto hardware. This
requires a relatively large number of units, but the visual
system already utilizes a similar approach in deploying
multiple feature detectors of a particular type (for exam-
ple, motion in particular direction) that are specific to
particular regions within the visual field.

Multiple copies of object feature units alone do not
solve the problem of where relations come from, how-
ever. There is still the need for some sort of segmentation
mechanism, a process which can “find” objects in sen-
sory input. A full-blown account of how this happens is
beyond the scope of our model. We assume that the pro-
cess involves two sorts ofmicro-relation units , those
that tend to respond to inputs from features of a single
object (sameness units) and those that tend to respond
to inputs from features of different objects (difference
units). Each micro-relation unit multiplies, rather than
adds, the inputs along the connections from the two ob-
jects features that it joins, similar to the “sigma-pi” units
introduced by Rumelhart, Hinton, and Williams (1986).



Thus with respect to these inputs, it behaves like some-
thing like an AND unit. Micro-relation units also excite
or inhibit each other to the extent that they represent con-
sistent or inconsistent parsings of the scene.

Micro-relations (simple relational correlations) take
the form of difference micro-relation units. The model
begins with one of these for each combination of ranges
of values on each dimension, but the connections to the
relation object dimension units are initially weak, and
all of the connections between micro-relation units be-
gin with 0 weights. Each time a micro-relation is co-
activated with its related object feature units, the weights
on the multiplicative connections are strengthened. Each
time two connected micro-relation units are co-activated,
the connection between them is strengthened.

The details of our proposal, in particular how it imple-
ments the binding of relation roles in complex cases like
the meanings of relational terms and how relative rela-
tional correlations are handled, are beyond the scope of
this paper.

Learning

Units are connected to one another in an extension of a
continuous Hopfield network. All connections are sym-
metric. The learning algorithm is an unsupervised vari-
ant of Contrastive Hebbian Learning (Movellan, 1990).
There are two phases to learning for each pattern, a “pos-
itive” and a “negative” phase. In the positive phase, a
training pattern is first clamped on a set of input units.
Next the network is allowed to settle, and for each weight
Hebbian learning is performed. That is, each weight is
incremented by an amount which is proportional to the
activations of the two connected units. Then, in the nega-
tive phase, the input units are unclamped, a small amount
of noise is injected into the network, and the network is
allowed to settle again. Nextanti-Hebbianlearning is
performed for each weight; each weight isdecremented
by an amount proportional to the product of the two
units’ activations. The negative phase functions to elimi-
nate spurious attractors in the network, providing a solu-
tion the problem of the lack of negative evidence: the net-
work is punished for producing patterns that do not occur
in the training set. When the positive and negative phase
weight changes cancel each other out, learning has been
successful. That is, for each pattern, the network settles
to the same states when the input units are clamped and
when they are then immediately unclamped.

Predictions

Micro-Relation Theory, as implemented in a network of
the type described, predicts that people should be sensi-
tive to relational correlations in input patterns. Presented
with a set of training patterns embodying relational cor-
relations, subjects should later accept patterns agreeing
with the correlations and reject those violating them. In
addition, the theory predicts that relational correlations
should begin as absolute (between specific object fea-
tures) rather than relative.

We developed the micro-relational architecture be-
cause of our interest in the learning of relational terms
in natural language, perhaps the best example of rela-
tional correlations in human behavior. While it is clear
that people do learn the meanings of relational terms, it
is difficult to test the specific predictions of the theory in
this complex domain. For this reason, we began with a
much simpler task, described in the next section. While
there has been research of this sort on unsupervised cor-
relational learning (Billman & Knutson, 1996), to our
knowledge it has not addressed the learning of relational
correlations.

Experiment
The goal of this experiment is to explore to what extent
people are sensitive to relational correlations. To do this
we presented subjects with a simple unsupervised learn-
ing task. Subjects were shown instances of parent-child
alien pairs from a fictitious planet. The members of these
pairs represent the two arguments in a relation. The in-
stances follow three “rules” realized as relational corre-
lations between dimensions characterizing the parent and
the child. We wanted to know (1) whether people could
learn what made a pair of aliens a good example of a
parent-child pair and if so, (2) what it was that they were
actually learning.

Method
Subjects 10 undergraduates participated in this exper-
iment.

Stimuli The familiarization stimuli consisted of 128
computer-generated pictures of parent-child pairs. The
stimuli included four “species” of aliens. The aliens
within a species all had the same basic body shape but
varied along the dimensions of size, darkness, body
shape, body hue, and eye color. We used four values
along each of these dimensions. The parent-child pairs
followed the following “rules”:

1. The child was always at least as big as the parent.
This represents a relative simple relational correlation.
Each specific combination of size values constitutes an
(absolute) simple relational correlation.

2. The parent was always at least as dark as the child.
This is also a relative relational correlation with a sim-
ple relational correlation for each combination of val-
ues.

3. The size of the child matched the darkness level of the
parent. This takes the form of specific combinations of
parent and child values along both dimensions. Each
of these constitutes an (absolute) complex relational
correlation. The rule itself would be a relative complex
relational correlation.

For each of the first two rules, there were 10 possible
specific combinations of size or darkness values. For the
third rule, both size and darkness values were relevant,
and there were 20 possible combinations of these.



The testing stimuli consisted of 72 computer-
generated pictures of parent-child pairs. Half of the test
pictures followed all of the above rules: half of these
were completely familiar patterns (“valid”), and the other
half were generalizations of the rules (“darkness-size”)
in which values on the distracter dimensions differed
from those presented during training but the darkness and
size values were combinations that had been presented.
The other half violated the rules in one way or another:

1. All three rules were violated (“wrong”).

2. The darkness rule was violated (“size”).

3. The size rule was violated (“darkness”).

4. The darkness-size complex relational correlations
were violated (“darkness & size”); that is, for a given
pair, the pair of darkness values and the pair of size
values did occur during training, but the combination
of the two pairs did not.

Procedure At the start of the experiment the subjects
were told: “The following are scenes representing ani-
mals on Planet X. Each scene shows a parent-child pair
of some species on Planet X. The child is always on the
left. Study the scenes carefully, taking as much time
as you need to look at each one. You will be tested on
the pictures later.” During this familiarization phase, the
scenes were presented on a computer screen and the sub-
ject was allowed to look at a scene for as long as desired
before going on to the next.

After the familiarization phase, subjects were told:
“For each of the following pictures, hit ‘y’ if they rep-
resent a parent-child pair and ‘n’ if they don’t.” Again,
they were allowed to look at each picture for as long as
they wanted before judging it.

Results and Discussion
Figure 1 shows the mean proportion of each type of test
item accepted as a parent-child pair by the subjects.
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Figure 1: Results of experiment. Mean proportion of each
type of test item accepted as a parent-child pair by the subjects.

Subjects accepted at significantly greater than chance
frequency the valid (p< :0001) and darkness-size (p=

:007) patterns and rejected at significantly greater than
chance frequency the darkness (p= 03) and wrong (p=
:004) patterns. Subjects were also significantly more
likely to accept the darkness-size patterns than either the
size (p< :0155) or the darkness (p< :0001) patterns.

The answer to our first question, then, is that people
can learn what it is that makes a good parent-child pair.
The subjects generalized over the training patterns, read-
ily accepting novel patterns (darkness-size) which dif-
fered from the training patterns on non-correlating di-
mensions. The answer to our second question is that
people are sensitive at least to the simple relational cor-
relations in the data. The advantage of the darkness
& size patterns over the darkness, size, or wrong pat-
terns shows that they have learned these correlations.
That is, in terms of our account, they have reached the
first phase of relational learning. The subjects also pre-
ferred patterns obeying the complex relational correla-
tions (darkness-size) to patterns which matched the train-
ing patterns onbothsize and darkness but failed to obey
the complex correlations (darkness & size), though this
difference was not significant. Thus there is as yet no ev-
idence that the subjects have achieved the second phase
of relational learning.

Simulation

To simulate the results of the experiment, we trained a re-
lational network on a simplified version of the subjects’
task. Input layers were divided intoCHILD andPARENT
groups; that is, we assumed that segmentation of the in-
put had already taken place. Within each of these groups
there were separate layers of units for the two correlating
dimensions (size and darkness) and one of the distracter
dimensions (body hue). These layers had a single unit
for each possible value on the relevant dimension.

For each input dimension there was an associated hid-
den layer of micro-relation units. Each of these units was
joined by multiplicative connections to two object fea-
ture units, one each for the child and the parent. These
units represent potential simple relational correlations.
These weights were initialized at a constant, small value
(0.04). All of the micro-relation units were also joined
to each other by ordinary additive connections initialized
with weights of 0.0. It is these connections that have
the potential to represent complex relational correlations.
The architecture of the network is shown in Figure 2.

On each training trial, one of the 56 combinations of
child and parent darkness, size, and hue that the subjects
were trained on was presented to the network. Input units
representing the child and parent values on the three di-
mensions for the training pattern were clamped on, and
all of the other input units were clamped off. Then the
units in the relational layers were allowed to settle, and
the weights were updated using Hebbian learning. Next
the input units were unclamped, a small amount of noise
was injected into the network, and the network was al-
lowed to settle again. Finally the weights were updated
using anti-Hebbian learning.
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Figure 2: Architecture of simulation network. Rectangles
indicate layers of units, arrows connections between layers.
There are input layers for each of three dimensions, for both
parent and child. Hidden layers consist of micro-relation units.
Micro-relation units are connected locally to pairs of object fea-
ture units in a given dimension, one for child, one for parent.
These connections are multiplicative (indicated by the dashed
lines). Each micro-relation unit is also connected to all other
relation units by conventional additive connections.

We tested the network and examined the weights fol-
lowing 1 and 10 epochs of training patterns. Follow-
ing 1 epoch, the multiplicative weights into those rela-
tion units representing the simple relational correlations
embodied in the training patterns had already clearly in-
creased while the others were near zero. Following 10
epochs of training, we examined the weights connect-
ing the relation units. For each of the (absolute) com-
plex relational correlations between size and darkness in
the training patterns, the network had learned a positive
weight between the corresponding relation units. All of
the other weights connecting relation units had become
negative or very close to 0. Thus the network seems to
have learned all of the absolute complex relational cor-
relations and to have learned negative weights (during
anti-Hebbian learning) which inhibit other combinations
of values.

The network was tested on the same set of patterns
as the subjects (except that since the network had only
one distracter dimension, there were fewer patterns that
generalized over the rules).

To measure the extent to which the network treated
a pattern as acceptable, we followed a procedure sim-
ilar to that followed during training. We first clamped
the test pattern on the input units, just as during training,
and allowed the relational layers to settle. We recorded
the activations of all of the units in the network at this
point. Next we unclamped the input units and allowed
the network to settle again. We calculated the Euclid-
ian distance between the final vector of activations of
all units (input and hidden) and that recorded after the
clamped phase. For patterns that the network accepts,
there should be relatively little change in activation. For

patterns that the network treats as unfamiliar, activation
should change during the unclamped phase as the net-
work alters the input pattern in the direction of more fa-
miliar patterns. To make the network performance com-
parable to the subjects’ data, we subtracted each activa-
tion change from an estimate of the maximum possible
change in activation (the largest change observed over
the test patterns before training). We will refer to this
measure as “clamped-unclamped similarity”.

Figure 3 shows the mean performance of two sepa-
rate networks1 We combined the valid and darkness-size
patterns because there were not enough patterns in the
darkness-size set to compare the two. We show darkness,
but not size, since the two are completely analogous.

Like the subjects, the network “prefers” patterns that
agree with both size and darkness simple relational corre-
lations to those which agree on neither or on only one of
the two dimensions. In fact, from the observed weights
and the data in the graph, we see that these correlations,
representing the first phase of relational learning, were
learned with a single pass through the patterns. The main
difference following additional training is in the signifi-
cantly increased preference for patterns obeying the (ab-
solute) complex relational correlations (darkness-size).
As in our account of relational learning, the mastery of
the simple relational correlations is followed by mastery
of the complex relational correlations.

Of course it is not surprising that the network treats the
patterns it was trained on as more familiar than patterns
which differ from the training patterns. The main points
of the simulation have been to show that the network ex-
hibits two of the phases of learning that we posited and
that it is not just the values on each dimension that matter
but the combination of values.

Discussion
Both the subjects in our experiment and the relational
network respond to absolute simple relational correla-
tions in unsupervised learning. But note that the model
predicts a stronger effect than we found among the sub-
jects. The network preferred patterns obeying the com-
plex relational correlations to those in which both of the
dimension-specific rules were obeyed but the complex
relational correlations were violated. We believe that this
behavior will emerge in the subjects with more training;
at least one of our subjects did exhibit this advantage for
the patterns obeying the complex correlations.

A further prediction of the theory is that relational cat-
egories start out highly specific, thatrelative relational
correlations come later. This prediction is not tested di-
rectly in the experiment we reported. To test this, we
will need to work with dimensions that are less familiar
to subjects, dimensions for which they have not already
learned an ordering of the values.

The solution to the binding problem that we offer in

1Both networks started with the same weights, but because
units are selected randomly during network settling, perfor-
mance varied somewhat from one network to another.
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Figure 3:Results of simulation. Similarity between activations following clamping of test patterns and immediate unclamping at
two points during training.

this paper also applies to another sort of binding, the
binding of a variable with its value. While this may seem
quite different from the binding of the features of an ob-
ject with one another, the Micro-Relation Theory also
offers an account of behavior that seems to require ex-
plicit variables. Like the roles in a relation, the variables
in a rule on this view are implicit in the pattern of activa-
tion across a set of micro-relation units representing the
primitive relations of sameness and difference in object
features. Thus our theory may offer a unified account of
a wide range of basic behaviors.

Conclusions
Human cognition is deeply relational, yet we lack a clear
picture of how relations emerge in the first years of life
and how we acquire new ones later on. Like object cate-
gories, relational categories are grounded in experience.
Like object categories, they are presumably built up out
of more basic stuff. In this paper, we have argued that
basic relation stuff is quite similar to basic object stuff; it
takes the form of distributed patterns across simple pro-
cessing units. We have argued that a correlational, asso-
ciationist account of the learning of relations is possible.
We believe this is a first step towards an understanding
of where relations come from.
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