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Abstract

This paper describes a modular connectionist
model of the acquisition of receptive inectional
morphology. The model takes inputs in the form
of phones one at a time and outputs the associ-
ated roots and inections. In its simplest version,
the network consists of separate simple recurrent
subnetworks for root and inection identi�cation;
both networks take the phone sequence as inputs.
It is shown that the performanceof the two separate
modular networks is superior to a single network re-
sponsible for both root and inection identi�cation.
In a more elaborate version of the model, the net-
work learns to use separate hidden-layer modules
to solve the separate tasks of root and inection
identi�cation.

INTRODUCTION

For many natural languages, the complexity of
bound morphology makes it a potentially challeng-
ing problem for a learning system, whether hu-
man or machine. A language learner must ac-
quire both the ability to map polymorphemic words
onto the sets of semantic elements they represent
and to map meanings onto polymorphemic words.
Unlike previous work on connectionist morphology
(e.g., MacWhinney & Leinbach (1991), Plunkett
& Marchman (1991) and Rumelhart & McClelland
(1986)), the focus of this paper is receptive mor-
phology, which represents the more fundamental,
or at least the earlier, process, one which produc-
tive morphology presumably builds on.
The task of learning receptive morphology is

viewed here as follows. The learner is \trained" on
pairs of forms, consisting of sequences of phones,
and \meanings", consisting of sets of roots and in-
ections. I will refer to the task as root and inec-
tion identi�cation. Generalization is tested by pre-
senting the learner with words consisting of novel
combinations of familiar morphemes. If the rule in
question has been acquired, the learner is able to
identify the root and inections in the test word.
Of interest is whether a model is capable of ac-

quiring rules of all of the types known for natural
languages. This paper describes a psychologically
motivated connectionist model (Modular Connec-
tionist Network for the Acquisition of Morphology,
MCNAM) which approaches this level of perfor-
mance. The emphasis here is on the role of mod-
ularity at the level of root and inection in the

model. I show how this sort of modularity improves
performance dramatically and consider how a net-
work might learn to use modules it is provided with.
A separate paper (Gasser, 1994) looks in detail at
the model's performance for particular categories
of morphology, in particular, template morphology
and reduplication.
The paper is organized as follows. I �rst provide

a brief overview of the categories of morphological
rules found in the world's languages. I then present
a simple version of the model and discuss simula-
tions which demonstrate that it generalizes for most
kinds of morphological rules. I then describe a ver-
sion of the model augmented with modularity at
the level of root and inection which generalizes
signi�cantly better and show why this appears to
be the case. Finally, I describe some tentative at-
tempts to develop a model which is provided with
modules and learns how to use them to solve the
morphology identi�cation tasks it is faced with.

CATEGORIES OF

MORPHOLOGICAL PROCESSES

I will be discussing morphology in terms of the tra-
ditional categories of \root" and \inection" and
morphological processes in terms of \rules", though
it should be emphasized that a language learner
does not have direct access to these notions, and
it is an open question whether they need to be an
explicit part of the system which the learner devel-
ops, let alone the device which the learner starts out
with. I will not make a distinction between inec-
tional and derivational morphology (using \inec-
tion" for both) and will not consider compounding.
A�xation imvolves the addition of the inection

to the root (or stem), either before (pre�xation),
after (su�xation), within (in�xation), or both be-
fore and after (circum�xation) the root. A further
type of morphological rule, which I will refer to as
mutation, consists in modi�cation to the root seg-
ments themselves. A third type of rule, familiar in
Semitic languages, is known as template morphol-
ogy. Here a word (or stem) consists of a root and a
pattern of segments which are intercalated between
the root segments in a way which is speci�ed within
the pattern. A fourth type, the rarest of all, con-
sists in the deletion of one or more segments. A
�fth type, like a�xation, involves the addition of
something to the root form. But the form of what
is added in this case is a copy, or a systematically



altered copy, of some portion of the root. This pro-
cess, reduplication, is in one way the most complex
type of morphology (though it may not necessarily
be the most di�cult for a child to learn) because it
seems to require a variable. It is not handled by the
model discussed in this paper. Gasser (1994) dis-
cusses modi�cation of the model which is required
to accommodate reduplication.

THE MODEL

The approach to language acquisition exempli�ed
in this paper di�ers from traditional symbolic ap-
proaches in that the focus is on specifying the sort
of cognitive architecture and the sort of general pro-
cessing and learning mechanisms which have the
capacity to learn some aspect of language, rather
than the innate knowledge which this might require.
If successful, such a model would provide a sim-
pler account of the acquisition of morphology than
one which begins with symbolic knowledge and con-
straints. Connectionist models are interesting in
this regard because of their powerful sub-symbolic
learning algorithms. But in the past, there has been
relatively little interest in investigating the e�ect
on the language acquisition capacity of structuring
networks in particular ways. The concern in this
paper will be with what is gained by adding mod-
ularity to a network.
Given the basic problem of what it means to

learn receptive morphology, I will begin with one
of the simplest networks that could have that ca-
pacity and then augment the device as necessary.
In this paper, two versions of the model are de-
scribed. Version 1 successfully learns simple exam-
ples of all of the morphological rules except redu-
plication and circum�xation, but its performance
is far from the level that might be expected from
a human language learner. Version 2 (MCNAM
proper) incorporates a form of built-in modularity
which separates portions of the network responsi-
ble for the identi�cation of the root and the in-
ections; this improves the network's performance
signi�cantly on all of the rule types except redupli-
cation, which cannot be learned even by a network
out�tted with this form of modularity.
Word recognition is an incremental process.

Words are often recognized long before they �n-
ish; hearers seem to be continuously comparing the
contents of a linguistic short-term memory with
the phonological representations in their mental
lexicons (Marslen-Wilson & Tyler, 1980). Thus
the task at hand requires a short-term memory of
some sort. There are several ways of represent-
ing short-term memory in connectionist networks
(Port, 1990), in particular, through the use of time-
delay connections out of input units and through
the use of recurrent time-delay connections on some
of the network units. The most exible approach
makes use of recurrent connections on hidden units,

though the arguments in favor of this option are
beyond the scope of this paper. The model to be
described here is a network of this type, a version of
the simple recurrent network due to Elman (1990).

Version 1

The Version 1 network is shown in Figure 1. Each
box represents a layer of connectionist processing
units and each arrow a complete set of weighted
connections between two layers. The network op-
erates as follows. A sequence of phones is presented
to the input layer one at a time. That is, each tick
of the network's clock represents the presentation
of a single phone. Each phone unit represents a
phonetic feature, and each word consists of a se-
quence of phones preceded by a boundary \phone"
made up of 0.0 activations.

hidden

phone

phone

root inflection

time

Figure 1: Network for Acquisition of Morphology
(Version 1)

An input phone pattern sends activation to the
network's hidden layer. The hidden layer also re-
ceives activation from the pattern that appeared
there on the previous time step. Thus each hidden
unit is joined by a time-delay connection to each
other hidden unit. It is the previous hidden-layer
pattern which represents the system's short-term
memory. Because the hidden layer has access to
this previous state, which in turn depended on its
state at the time step before that, there is no ab-
solute limit to the length of the context stored in
the short-term memory. At the beginning of each
word sequence, the hidden layer is reinitialized to
a pattern consisting of 0.0 activations.
Finally the output units are activated by the hid-

den layer. There are three output layers. One rep-
resents simply a copy of the current input phone.
Training the network to auto-associate its current
input aids in learning the root and inection identi-
�cation task because it forces the network to learn
to distinguish the individual phones at the hidden
layer, a prerequisite to using the short-term mem-
ory e�ectively. The second layer of output units
represents the root \meaning". For each root there
is a single output unit. Thus while there is no real
semantics, the association between the input phone
sequence and the \meaning" is at least an arbitrary



one. The third group of output units represents the
inection \meaning". Again there is a unit for each
separate inection.

For each input phone, the network receives a tar-
get consisting of the correct phone, root, and inec-
tion outputs for the current word. The phone target
is identical to the input phone. The root and in-
ection targets, which are constant throughout the
presentation of a word, are the patterns associated
with the root and inection for the input word.

The network is trained using the backpropa-
gation learning algorithm (Rumelhart, Hinton, &
Williams, 1986), which adjusts the weights on all
of the network's connections in such a way as to
minimize the error, that is, the di�erence between
the network's outputs and the targets. For each
morphological rule, a separate network is trained
on a subset of the possible combinations of root
and inection. At various points during training,
the network is tested on unfamiliar words, that is,
novel combinations of roots and inections. The
performance of the network is the percentage of the
test roots and inections for which its output is cor-
rect at the end of each word sequence when it has
enough information to identify both root and in-
ection. A \correct" output is one which is closer
to the appropriate target than to any of the others.

In all of the experiments reported on here, the
stimuli presented to the network consisted of words
in an arti�cial language. The phoneme inventory
of the language was made up 19 phones (24 for the
mutation rule, which nasalizes vowels). For each
morphological rule, there were 30 roots, 15 each
of CVC and CVCVC patterns of phones. Each
word consisted of two morphemes, a root and a
single \tense" inection, marking the \present"
or \past". Examples of each rule: (1) su�x:
present{vibuni , past{vibuna; (2) pre�x: present{
ivibun, past{avibun; (3) in�x: present{vikbun,
past{vinbun; (4) circum�x: present{ivibuni , past{
avibuna; (5) mutation: present{vibun, past{vib~un;
(6) deletion: present{vibun, past{vibu; (7) tem-
plate: present{vaban, past{vbaan.

For each morphological rule there were 60 (30
roots � 2 inections) di�erent words. From these
40 were selected randomly as training words, and
the remaining 20 were set aside as test words. For
each rule, ten separate networks, with di�erent ran-
dom initial weights, were trained for 150 epochs
(repetitions of all training patterns). Every 25
epochs, the performance of the network on the test
patterns was assessed.

Figure 2 shows the performance of the Version
1 network on each rule (as well as performance on
Version 2, to be described below). Note that chance
performance for the roots was .033 and for the in-
ections .5 since there were 30 roots and 2 inec-
tions. There are several things to notice in these re-
sults. Except for root identi�cation for the circum-

�x rule, the network performs well above chance.
However, the results are still disappointing in many
cases. In particular, note the poor performance on
root identi�cation for the pre�x rule and inection
identi�cation for the su�x rule. The behavior is
much poorer than we might expect from a child
learning these relatively simple rules.
The problem, it turns out, is interference between

the two tasks which the network is faced with. On
the one hand, it must pay attention to information
which is relevant to root identi�cation, on the other,
to information relevant to inection identi�cation.
This means making use of the network's short-term
memory in very di�erent ways. Consider the pre-
�xing case, for example. Here for inection identi�-
cation, the network need only pay attention to the
�rst phone and then remember it until the end of
the sequence is reached, ignoring all of the phones
which appear in between. For root identi�cation,
however, the network does best if it ignores the ini-
tial phone in the sequence and then pays careful
attention to each of the following phones.
Ideally the network's hidden layer would divide

into modules, one dedicated to root identi�cation,
the other to inection identi�cation. This could
happen if some of the recurrent hidden-unit weights
and some of the weights on hidden-to-output con-
nections went to 0. However, ordinary backpropa-
gation tends to implement sharing among hidden-
layer units: each hidden-layer unit participates to
some extent in activating all output units. When
there are conicting output tasks, as in this case,
there are two sorts of possible consequences: ei-
ther performance on both tasks is mediocre, or the
simpler task comes to dominate the hidden layer,
yielding good performance on that task and poor
performance on the other. In the Version 1 results
shown in Figure 2, we see both sorts of outcomes.
What is apparently needed is modularity at the

hidden-layer level. One sort of modularity is hard-
wired into the network's architecture in Version 2
of the model, described in the next section.

Version 2

Because root and inection identi�cationmake con-
icting demands on the network's short-termmem-
ory, it is predicted that performance will improve
with separate hidden layers for the two tasks. Var-
ious degrees of modularity are possible in connec-
tionist networks; the form implemented in Version
2 of the model is total modularity, completely sep-
arate networks for the two tasks. This is shown
in Figure 3. There are now two hidden-layer mod-
ules, each with recurrent connections only to units
within the same module and with connections to
one of the two output identi�cation layers of units.
(Both hidden layers connect to the auto-associative
phone output layer.)
The same stimuli were used in training and test-
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Figure 2: Performance on Test Words Following Training (Network Versions 1 and 2)
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Figure 3: Network for Acquisition of Morphology
(Version 2)

ing the Version 2 network as the Version 1 network.
Each Version 2 network had the same number of
total hidden units as each Version 1 network, 30.
Each hidden-layer module contained 15 units. Note
that this means there are fewer connections in the
Version 2 than the Version 1 networks. Investiga-
tions with networks with hidden layers of di�erent
sizes indicate that, if anything, this should favor
the Version 1 networks.

Figure 2 compares results from the two versions
following 150 epochs of training. For all of the
rule types, modularity improves performance for

both root and inection identi�cation. Obviously,
hidden-layer modularity results in diminished inter-
ference between the two output tasks. Performance
is still far from perfect for some of the rule types,
but further improvement is possible with optimiza-
tion of the learning parameters.

TOWARDS ADAPTIVE

MODULARITY

It is important to be clear on the nature of the mod-
ularity being proposed here. As discussed above, I
have de�ned the task of word recognition in such
a way that there is a built-in distinction between
lexical and grammatical \meanings" because these
are localized in separate output layers. The modu-
lar architecture of Figure 3 extends this distinction
into the domain of phonology. That is, the shape
of words is represented internally (on the hidden
layer) in terms of two distinct patterns, one for the
root and one for the inection, and the network
\knows" this even before it is trained, though of
course it does not know how the root and inec-
tions will be realized in the language.
A further concern arises when we consider what

happens when more than one grammatical category
is represented in the words being recognized, for
example, aspect in addition to tense on verbs. As-
suming the hidden-layer modules are a part of the
innate makeup of the learning device, this means
that a �xed number of given modules must be di-
vided up among the separate output \tasks" which



the target language presents. Ideally, the network
would have the capacity to �gure out for itself how
to distribute the modules it starts with among the
various output tasks; I return to this possibility be-
low. But it is also informative to investigate what
sort of a sharing arrangement achieves the best per-
formance. For example, given two modules and
three output tasks, root identi�cation and the iden-
ti�cation of two separate inections, which of the
three possible ways of sharing the modules achieves
the best performance?

Two sets of experiments were conducted to in-
vestigate the optimal use of �xed modules by a
network, one designed to determine the best way
of distributing modules among output tasks when
the number of modules does not match the num-
ber of output tasks and one designed to determine
whether a network could assign the modules to the
tasks itself. In both sets of experiments, the stim-
uli were words composed of a stem and two a�xes,
either two su�xes, two pre�xes, or one pre�x and
one su�x. (All of these possibilities occur in natu-
ral languages.) The roots were the same ones used
in the a�xation and deletion experiments already
reported. In the two-su�x case, the �rst su�x was
/a/ or /i/, the second su�x /s/ or /k/. Thus the
four forms for the root migon were migonik , migo-

nis , migonak , and migonas . In the two-pre�x case
the pre�xes were /s/ or /k/ and /a/ or /i/. In the
pre�x{su�x case, the pre�x was /u/ or /e/ and the
su�x /a/ or /i/. There were in all cases two hidden-
layer modules. The size of the modules was such
that the root identi�cation task had potentially 20
units and each of the inection identi�cation tasks
potentially 3 units at its disposal; the sum of the
units in the two modules was always 26.

The results are only summarized here. The con-
�guration in which a single module is shared by the
two a�x-identi�cation tasks is consistently superior
for peformance on root identi�cation but only su-
perior for a�x identi�cation in the two-su�x case.
For the pre�x-su�x case, the con�guration in which
one module is shared by root identi�cation and suf-
�x identi�cation is clearly inferior to the other two
con�gurations for performance on su�x identi�ca-
tion. For the two-pre�x case, the con�gurations
make little di�erence for performance on identi�ca-
tion of either of the pre�xes. Note that the results
for the two-pre�x and two-su�x cases agree with
those for the single-pre�x and single-su�x cases re-
spectively (Figure 2).

What the results for root identi�cation make
clear is that, even though the a�x identi�cation
tasks are easily learned with only 3 units, when they
are provided with more units (23 in these experi-
ments), they will tend to \distribute" themselves
over the available units. If this were not the case,
performance on the competing, and more di�cult,
task, root identi�cation, would be no better when

it has 20 units to itself than when it shares 23 units
with one of the other two tasks.

We conclude that the division of labor into sep-
arate root and inection identi�cation modules
works best, primarily because it reduces interfer-
ence with root identi�cation, but also for the two-
su�x case, and to a lesser extent for the pre�x-
su�x case, because it improves performance on af-
�x identi�cation. If one distribution of the avail-
able modules is more e�cient than the others, we
would like the network to be able to �nd this dis-
tribution on its own. Otherwise it would have to
be wired into the system from the start, and this
would require knowing that the di�erent inection
tasks belong to the same category. Some form of
adaptive use of the available modules seems called
for.

Given a system with a �xed set of modules but no
wired-in constraints on how they are used to solve
the various output tasks, can a network organize
itself in such a way that it uses the modules e�-
ciently? There has been considerable interest in the
last few years in architectures which are endowed
with modularity and learn to use the modularity
to solve tasks which call for it. The architecture
described by Jacobs, Jordan, & Barto (1991) is an
example. In this approach there are connections
from each modular hidden layer to all of the out-
put units. In addition there are one or more gating
networks whose function is to modulate the input
to the output units from the hidden-layer modules.
In the version of the architecture which is appropri-
ate for domains such as the current one, there is a
single gating unit responsible for the set of connec-
tions from each hidden module to each output task
group. The outputs of the modules are weighted
by the outputs of the corresponding gating units
to give the output of the entire system. The whole
network is trained using backpropagation. For each
of the modules, the error is weighted by the value of
the gating input as it is passed back to the modules.
Thus each module adjusts its weights in such a way
that the di�erence between the system's output and
the desired target is minimized, and the extent to
which a module's weights are changed depends on
its contribution to the output. For the gating net-
works, the error function implements competition
among the modules for each output task group.
For our purposes, two further augmentations are
required. First, we are dealing with recurrent net-
works, so we permit each of the modular hidden
layers to see its own previous values in addition to
the current input, but not the previous values of
the hidden layers of the other modules. Second, we
are interested not only in competition among the
modules for the output groups, but also in compe-
tition among the output groups for the modules.
In particular, we would like to prevent the network
from assigning a single module to all output tasks.



To achieve this, the error function is modi�ed so
that error is minimized, all else being equal, when
the total of the outputs of all gating units dedicated
to a single module is neither close to 0.0 nor close
to the total number of output groups.
Figure 4 shows the architecture for the situa-

tion in which there is only one inection to be
learned. (The auto-associative phone output layer
is not shown.) The connections ending in circles
symbolize the competition between sets of gating
units which is built into the error function for the
network. Note that the gating units have no in-
put connections. These units have only to learn
a bias, which, once the system is stable, leads to
a relatively constant output. The assumption is
that, since we are dealing with a spatial crosstalk
problem, the way in which particular modules are
assigned to particular tasks should not vary with
the input to the network.

phone

root inflection

hidden2hidden1

hidden1

in
fl

hidden2
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Figure 4: Adaptive Modular Architecture for Mor-
phology Acquisition

An initial experiment demonstrated that the
adaptive modular network consistently assigned
separate modules to the output tasks when there
were two modules and two tasks (identi�cation of
the root and a single inection).
Next a set of experiments tested whether the

adaptive modular architecture would assign two
modules to three tasks (root and two inections)
in the most e�cient way for the two-su�x, two-
pre�x, and pre�x-su�x cases. Recall that the most
e�cient pattern of connectivity in all cases was the
one in which one of the two modules was shared by

the two a�x identi�cation tasks.

Adaptive modular networks with two modules of
15 units each were trained on the two-su�x, two-
pre�x, and pre�x-su�x tasks described in the last
section. Following 120 epochs, the outputs of the
six gating units for the di�erent modules were ex-
amined to determine how the modules were shared.
The results were completely negative; the three
possible ways of assigning the modules to the three
identi�cation tasks occurred with approximately
equal frequency. The problem was that the inec-
tion identi�cation tasks were so much easier than
the root identi�cation task that they claimed the
two modules for themselves early on, while neither
module was strongly preferred by the root task.
Thus as often as not, the two inections ended up
assigned to di�erent modules. To compensate for
this, then, is it reasonable to give root identi�ca-
tion some sort of advantage over inection identi�-
cation? It is well-known that children begin to ac-
quire lexical morphemes before they acquire gram-
matical morphemes. Among the reasons for this
is probably the more abstract nature of the mean-
ings of the grammatical morphemes. In terms of
the network's tasks, this relative di�culty would
translate into an inability to know what the inec-
tion targets would be for particular input patterns.
Thus we could model it by delaying training on the
inection identi�cation task.

The experiment with the adaptive modular net-
works was repeated, this time with the following
training regimen. Entire words (consisting of root
and two a�xes) were presented throughout train-
ing, but for the �rst 80 epochs, the network saw
targets for only the root identi�cation task. That
is, the connections into the output units for the two
inections were not altered during this phase. Fol-
lowing the 80th epoch, by which time the network
was well on its way to learning the roots, train-
ing on the inections was introduced. This pro-
cedure was followed for the two-su�x, two-pre�x,
and pre�x-su�x tasks; 20 separate networks were
trained for each type. For the two-su�x task, in all
cases the network organized itself in the predicted
way. That is, for all 20 networks one of the mod-
ules was associated mainly with the two inection
output units and the other associated with the root
output units. In the pre�x-su�x case, however, the
results were more equivocal. Only 12 out of 20 of
the networks organized themselves in such a way
that the two inection tasks were shared by one
module, while in the 8 other cases, one module was
shared by the root and pre�x identi�cation tasks.
Finally, in the two-pre�x case, all of the networks
organized themselves in such a way that the root
and the �rst pre�x shared a module rather than in
the apparently more e�cient con�guration.

The di�erence is not surprising when we consider
the nature of the advantage of the con�guration



in which the two inection identi�cation tasks are
shared by one module. For all three types of af-
�xes, roots are identi�ed better with this con�gu-
ration. But this will have little e�ect on the way the
network organizes itself because, following the 80th
epoch when competition among the three output
tasks is introduced, one or the other of the mod-
ules will already be �rmly linked to the root out-
put layer. At this point, the outcome will depend
mainly on the competition between the two inec-
tion identi�cation tasks for the two modules, the
one already claimed for root identi�cation and the
one which is still unused. Thus we can expect this
training regimen to settle on the best con�guration
only when it makes a signi�cant di�erence for in-
ection, as opposed to root, identi�cation. Since
this di�erence was greater for the two-su�x words
than for the pre�x-su�x words and virtually non-
existent for the two-pre�x words, there is the great-
est preference in the two-su�x case for the con�g-
uration in which the two inection tasks are shared
by a single module. It is also of interest that for the
pre�x-su�x case, the network never chose to share
one module between the root and the su�x; this is
easily the least e�cient of the three con�gurations
from the perspective of inection identi�cation.
Thus we are left with only a partial solution to

the problem of how the modular architecture might
arise in the �rst place. For circumstances in which
the di�erent sorts of modularity impinge on inec-
tion identi�cation, the adaptive approach can �nd
the right con�guration. When it is performance on
root identi�cation that makes the di�erence, how-
ever, this approach has nothing to o�er. Future
work will also have to address what happens when
there are more than two modules and/or more than
two inections in a word.

CONCLUSIONS

Early work applying connectionist networks to
high-level cognitive tasks often seemed based on the
assumption that a single network would be able to
handle a wide range of phenomena. Increasingly,
however, the emphasis is moving in the direction
of special-purpose modules for subtasks which may
conict with each other if handled by the same
hardware (Jacobs et al., 1991). These approaches
bring connectionist models somewhat more in line
with the symbolic models which they seek to re-
place. In this paper I have shown how the ability of
simple recurrent networks to extract \structure in
time" (Elman, 1990) is enhanced by built-in modu-
larity which permits the recurrent hidden-unit con-
nections to develop in ways which are suitable for
the root and inection identi�cation tasks. Note
that this modularity does not amount to endowing
the network with the distinction between root and
a�x because both modules take the entire sequence
of phones as input, and the modularity is the same

when the rule being learned is one for which there
are no a�xes at all (mutation, for example).
Modular approaches, whether symbolic or con-

nectionist, inevitably raise further questions, how-
ever. The modularity in the pre-wired version of
MCNAM, which is reminiscent of the traditional
separation of lexical and grammatical knowledge in
linguistic models, assumes that the division of \se-
mantic" output units into lexical and grammatical
categories has already been made. The adaptive
version partially addresses this shortcoming, but it
is only e�ective in cases where modularity bene-
�ts inection identi�cation. Furthermore, it is still
based on the assumption that the output is divided
initially into groups representing separate compet-
ing tasks. I am currently experimenting with re-
lated adaptive approaches, as well as methods in-
volving weight decay and weight pruning, which
treat each output unit as a separate task.
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