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Abstract
This paper presents a connectionist model of how
representations for syllables might be learned
from sequences of phones. A simple recurrent
network is trained to distinguish a set of words in
an artificial language, which are presented to it as
sequences of phonetic feature vectors. The dis-
tributed syllable representations that are learned
as a side-effect of this task are used as input to
other networks. It is shown that these represen-
tations encode syllable structure in a way which
permits the regeneration of the phone sequences
(for production) as well as systematic phonologi-
cal operations on the representations.

Linguistic Structure and Distributed
Representation

If the language sciences agree on one thing, it is the
hierarchical nature of language. The importance of hi-
erarchical, structured representations is now generally
recognized for the phonological pole, where syllables
and metrical units now play a major role (see, e.g., Fra-
zier (1987) and Goldsmith (1990)), as well as for the
syntactic/semantic pole of language and language pro-
cessing. The major reason for believing in structured
representations is the significance of structure-sensitive
operations in language processing. A semantic infer-
ence rule may need to know where the subject of a
clause is; a morphological reduplication rule may need
to know where the coda (final consonant(s)) of a sylla-
ble is.

Traditional symbolic representations are based cru-
cially on the simple notion of concatenation (van
Gelder, 1990). A syllable representation, for exam-
ple, is a (bracketed) string of concatenated phones.
Recent connectionist work offers as an alternative to
this widely accepted approach distributed represen-
tations, for which it is generally impossible to isolate
which elements of the representation denote which of
the lower-level units comprising the structure being
represented.

What good are distributed representations? They
certainly are harder to interpret directly, at least by ex-
ternal “users” of the system that creates them. And
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at first blush it seems cumbersome, if not impossible,
to implement structure-sensitive operations on them,
operations which present no particular difficulty for
symbolic representations (Fodor & Pylyshyn, 1988).
Clearly distributed representations would be useless
for most purposes if they were not amenable to such
operations. Recently, however, it has been shown
that it is possible to arrive at a set of connection
weights which implements structure-sensitive opera-
tions on distributed representations. Where the rep-
resentations arise on hidden layers through training,
the operations on them are also implemented through
training (Chalmers, 1990). Where the representations
arise as a result of the application of a set of primitive
operations analogous to the filling of roles in symbolic
models, the operations on them can be implemented
more directly (Legendre, Miyata, & Smolensky, 1991).

There are three reasons to prefer distributed over
symbolic representations for structured objects such as
syllables and sentences.

1. Distributed representations do not necessarily in-
crease in size as the complexity of the represented
object increases. In the case of some types of rep-
resentations, for example, those described in this
paper, representations for objects of the same type
are of fixed width (Pollack, 1990). This seems more
important for syntax/semantics than for phonology,
where there is apparently no recursive embedding,
but in a learning context, it is a desirable feature for
phonological representations too since a system can-
not be expected to know beforehand how complex
the representations will need to be and therefore how
much memory to allot to them.

2. Complex transformations can be performed on dis-
tributed representations in a single parallel step,
rather than through a series of symbolic conses,
cars, and cdrs (Legendre et al., 1991).

3. There are relatively simple algorithms for learning
the structure in distributed representations (Elman,
1990; Pollack, 1990).
Most work concerned with distributed representa-

tions for structured objects has examined syntax or
semantics. It remains to be shown whether it is possi-
ble to learn distributed syllable representations which
embody the structure required for phonological oper-
ations of various sorts. This is in part what this study
seeks to establish.
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Linguistic Structure and Time
Language takes place in time: input to hearers and
output from speakers is sequential. If linguistic knowl-
edge is organized hierarchically, at least part of what
hearers do in perceiving language must consist in tak-
ing in sequences of elements at one level and classi-
fying them as belonging to a single unit at a higher
level. Something temporal is turned into something
static. In this sense a syllable is a static summary
of a temporal sequence of phones. Speakers in turn
carry out the reverse process: they turn static repre-
sentations into temporal sequences. Given a syllable
representation, they must unpack it into its component
onset (initial consonant(s)) and rime (remaining seg-
ments). The sorts of syllable representations we seek
should be accessible via the categorization that takes
place during perception and should be expandable into
their component elements during production.

The temporal nature of language is related intimately
to the issue of short-term memory. The process by
which a sequence of elements at one level is recognized
as a single element at a higher level requires access to
more than just a single element at a time; a context is
necessary. The production of a sequence of elements,
given a higher-level summary representation as input,
requires as a context some representation of what has
already been produced.

One approach to short-term memory is to give a
system access to a buffer of some fixed width. This
has several drawbacks, in particular the problem of
how the system is to know beforehand how wide the
buffer should be (Port, 1990). An alternative is an
approach that permits a system to develop its own
short-term memory. This is possible in connection-
ist networks with recurrent connections (Elman, 1990;
Jordan, 1986; Port, 1990). It is this method that is
utilized in the study described here.

The Learner’s Task
Language acquisition begins with perception, so we ex-
pect the representations for syllables and other prosodic
units to result from perceptual processes. There are
several possibilities for how this might happen, though
the most reasonable is probably some combination.

1. The hearer/learner may be learning phonology for its
own sake, that is, either simply looking for regularity
in the input, or looking for evidence that would allow
the setting of some innate parameters (Dresher &
Kaye, 1990).

2. The hearer/learner may be attempting to map per-
ceptual features onto representations of articulatory
gestures, as in various versions of the motor theory
of perception (Liberman & Mattingly, 1986).

3. The hearer/learner may learn prosodic representa-
tions as a side-effect of word recognition.
It is the third possibility that is pursued here. The

idea that phonology emerges as the child learns to rec-
ognize and produce words is an appealing idea, and an
old one. It is based on the notion that phonology is
not just arbitrary patterning, but rather a phenomenon
with functions for the language processing system: to
facilitate word recognition and to organize word pro-
duction. According to the third view in the list above,

the child acquires phonological representations in the
context of using them.

Consider the relationship between the acquisition of
word recognition and the acquisition of syllable struc-
ture. In learning to distinguish an initial subset of
the words in the target language, a learner is provided
with relatively direct information about the distinctive-
ness among a sizable subset of the possible syllables
in the language. Because the syllables are contrastive
units, the learner is forced to distinguish them in or-
der to distinguish the words. The question addressed
here is whether the word recognition task suffices to
develop representations which support phonological
operations.

A human learner/hearer is presented with unseg-
mented, continuous input. The task of the system stud-
ied here is a considerably simpler one: its input consists
of sequences of phones, each in the form of a phonetic
feature vector. The phones appear one at a time, and the
internal state of the system on the previous time step
provides the necessary context for recognition. The
system’s initial task is simply to assign sequences of
phones (representing words in the language) to lexical
categories. As a side effect of performing this task,
it develops internal representations for various subse-
quences making up the words, in particular for the
syllables in the language. These subsequence repre-
sentations can then in turn be investigated by treating
them as inputs to components with other tasks. Two
further tasks are dealt with here: the transformation of
a static sequence representation into the sequence of
phones it represents (the production task), and the sys-
tematic mapping of one sequence representation onto
another. In both cases, what is of interest is whether
the sequence representations permit generalizations to
be made. That is, trained on a subset of the sequence
representations, does the system respond to others on
which it was not trained?

The Approach
The networks used in the study described here are sim-
ple recurrent networks of the types first investigated
by Jordan (1986) and Elman (1990). They consist
of feedforward networks supplemented with recurrent
connections from the hidden and/or output layers and
are trained using the familiar back-propagation learn-
ing algorithm (Rumelhart, Hinton, & Williams, 1986).
Figure 1 shows the architectures of the networks used
for the recognition and production tasks in the experi-
ments described below. Earlier experiments indicated
the superiority of these particular architectures over
other variants of simple recurrent networks for these
tasks.

The recognition network is presented with a se-
quence of phones, one at a time, each phone consisting
of a vector of phonetic features. Among the features
is sonority, which tends to correlate with proximity
to the nucleus of a syllable. Each sequence ends with
a boundary symbol, represented by an input pattern
consisting entirely of zeros. The network is trained to
auto-associate the input phone pattern (that is, simply to
copy it to a set of output units), and to categorize the in-
put sequenceas belonging to one of a set of morphemes
in the language. The auto-association task, while not
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Figure 1: Network Architectures

directly related to word recognition, has the effect of
forcing the network to distinguish the phones making
up the sequences. The network is provided with tar-
gets for both the auto-association and recognition tasks.
The lexical target remains constant throughout the pre-
sentation of the sequence. Via recurrent connections
the network also has access to a copy of its hidden
layer on the previous time step. A distributed syllable
representation, to be used as input to other networks, is
obtained by presenting the sequence of phones making
up the syllable followed by a boundary symbol and
saving the pattern which appears on the hidden layer at
the end of this sequence.

The production network takes a distributed syllable
representation (from the recognition network) as input.
This remains constant throughout the production of the
sequence. The network is trained to output, one at
a time, the phones making up the sequence followed
by a boundary pattern following the sequence. Each
phone takes the form of a feature vector, identical to
the pattern used as input to the recognition network.
Targets are provided for each of the output phones.
The production network has recurrent connections on
both the hidden and output layers. The output pattern
is added to a decayed version of the previous sequence
of outputs and sent to the network as part of its input
(on the STATE layer).

Experiments
Stimuli
Stimuli for the experiment consisted of phones and
phone sequences in an artificial language. Phones
were represented by vectors of 11 phonetic features.
Possible syllables in the language are characterized as
follows:

onset ! f0,p,f,m,t,s,n,k,xg

nucleus ! fi,e,a,o,ug

coda ! f0,n,sg.

Thus there were 135 possible syllables in all.

Procedures
Each experiment began with the training of a recogni-
tion network to categorize a set of words in the artificial
language. Each word consisted of two legal syllables
in the language, and the set of words was generated
by randomly combining pairs of syllables, with the re-
striction that no identical pairs were included. Once
the recognition network had been trained on the words,
representations for each of the 135 syllables in the lan-
guage, consisting of hidden layer patterns following the
presentation of the syllable sequences, were extracted
from the network. These syllable representations were
then used as inputs to other networks.

Experiment 1
First 100 two-syllable words were generated. This re-
sulted in a set which contained 104 of the 135 possible
syllables in the language. Next the recognition network
was trained to identify the phone sequences represent-
ing the words. Previous experiments have shown that
word recognition training on a relatively large set is
more effective if the words are introduced gradually
to the network rather than all at once, an idea inspired
by the regimen used by Plunkett & Marchman (1991)
to train a network to learn English past tense forms.
Three new words were introduced to the training set
each time the mean square error per pattern for the cur-
rent training set dropped below 1.0. Training continued
for 600 repetitions of the training set (43,048 words),
by which time all 100 words had been introduced to
the training set.
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Performance on word recognition at this point was
far from impressive. Only 17 of the 100 words were
correctly identified at the point where the final word
boundary was presented. Still it was felt that in at-
tempting to learn to distinguish the words, the network
might have developed distinct representations for the
syllable sequences that made them up. Representa-
tions for all 135 possible syllables were set aside by
presenting the network with the phone sequences and
then saving the final pattern on the hidden layer. The
hidden layer of the recognition network, and hence the
width of the distributed syllable representations, was
25 units.

Next these syllable representations were used as in-
puts to a production network. 20% of the syllables
were randomly selected to be set aside for testing the
network for generalization. These included sequences
which had been parts of the words in the original recog-
nition training set and others which were not included
in the set. The production network was trained to out-
put each syllable sequence followed by a boundary
symbol. Training continued for 110 repetitions of all
patterns, at which point the network made errors on 7
of the 384 segments making up the training syllables.
Errors were made on 7 of the 95 segments in the test
sequences. Only one of these segments was one which
did not lead to a legal syllable in the language.

These results indicate that the recognition network
is able to generalize about syllable structure on words
containing a subset of the possible syllables and that
the distributed representations developed during train-
ing can be used for production as well. The fact that
the errors made are reasonable ones indicates that the
representations are encoding syllable structure in a sys-
tematic way.

Next the trained recognition network was presented
a representative set of 142 bogus syllables, sequences
which did not conform to the language the network
had been trained on. These included sequences with
phones not among the phoneme inventory of the lan-
guage (e.g., b and d), sequences with illegal codas
(e.g., fap), sequences with long nuclei (e.g., mua), se-
quences with cluster onsets, and sequences with no nu-
clei. The hidden-layer representations for each of these
sequences were saved and presented to the trained pro-
duction network. The output of the production network
was then examined to determine whether the networks
would in effect correct the representations. The pro-
duction network responded to 97 of the 142 sequences
(68%) by replacing the original sequence with a legal
syllable in the language. Typical responses included
the following: kn ! ken, kfe ! ke, xou ! xu, pik !
pi, zan ! nan.

These results are further evidence that the recogni-
tion and production networks have learned about the
structure of syllables in the language. They also indi-
cate that the representations are robust.

Experiment 2
Finally, the syllable representations from the recog-
nition network were used as inputs to simple feed-
forward networks which were designed to determine
whether the representations could be used for phono-
logical transformations. Each feedforward network

took as input a syllable representation and yielded as
output the syllable representation that resulted when
applying a particular rule to the input syllable. Three
rules (and three networks) were used: a rule which
replaced the vowel in a syllable with u, a rule which
made the coda of the syllable -s, and a rule which re-
placed the onset of the syllable with the fricative in the
same place of articulation as the onset of the original
syllable (or by s if there was no onset).

Each network was trained on 80% of the syllables
until there were no errors, then tested on the remaining
20%. Training required about 25 repetitions of all of
the patterns. The network’s response was taken to
be that syllable (of the 135 possible) whose distributed
representation was closest (in Euclidian distance) to the
network’s output pattern. For each rule, over 95% of
the test syllables were generated correctly. In all cases
errors resulted in syllables which satisfied the basic
constraint imposed by the rule in question (u nucleus,
s coda, fricative onset).

These results indicate that the syllable representa-
tions learned by the recognition network encode sylla-
ble structure in a way which makes it accessible to the
sorts of operations which are common in the phono-
logical systems of natural languages.

Discussion
The experiments reported on here demonstrate that
simple recurrent networks can be trained to develop
representations of syllables which encode information
about structure in a distributed form. These representa-
tions present a viable alternative to traditional concate-
native types of representations. Like their symbolic
counterparts, the distributed representations can be un-
packed into the sequences they represent and can be
transformed in systematic ways. Unlike their symbolic
counterparts, the distributed syllable representations
are learned; are of fixed width; and permit parallel,
single-step operations.

There are at least two other connectionist approaches
to the acquisition of syllables. Goldsmith & Larson
(1990) model the syllabification of words in a variety
of languages using a constraint satisfaction network in
which units represent segments in the word and activa-
tions represent the “derived sonority” of the segments,
an indication of their role in the syllabic structure of the
word. Two simple parameters characterize syllabifica-
tion in each language. The model provides an elegant
account of a range of phenomena, but it is not clear
what it has to do with processing since what is mod-
eled is abstract, atemporal derivation. It is also not
specified how a language learner might have access to
the derived sonorities needed to learn the parameters.

More in the spirit of the present approach is an ex-
periment by Corina (1991), in which a simple recurrent
network was presented with sequencesof phonetic seg-
ments from a database of spoken English utterances.
Trained simply to predict the next segment, the net-
work showed clear evidence of having discovered the
statistical regularities that characterize the structure of
the English syllable. That is, its output predictions
corresponded closely to the actual probabilities of par-
ticular segment classes in particular positions. This
is evidence that a network can also learn about sylla-
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ble structure from training on an unsupervised task. It
remains to be seen whether the hidden layer patterns
from Corina’s network are suited for recognition and
production or whether there is anything to be gained
by combining the supervised recognition and unsuper-
vised prediction tasks.1

How might the syllable representations learned in
the network fit into to a more complete model of word
recognition and production? I noted above that the
recognition network was not especially successful in
learning to distinguish the 100 words it was trained
on. As the number of words to be recognized increases
to more plausible ranges, we can expect very serious
degradation in this capacity, though increasing the hid-
den layer size would offset the degradation to some
extent. Yet the problem might go away in a hierarchi-
cally organized system with simple recurrent networks
operating with different units as inputs. Word recogni-
tion might then be a process of assigning sequences of
syllables and/or larger metrical units to word or mor-
pheme units. Thus the syllable representations learned
in the network described here would provide the in-
put to a syllable-level network. See Gasser (1991) for
more on this proposal.

From the perspective of its plausibility as a model
of phonological acquisition, the present model has a
number of inadequacies and gaps. First, I have only
scratched the surface in terms of what might be re-
quired of such a model. How, for example, might
this approach account for learning how to assign stress
to novel words (in a language which does this in a
non-arbitrary way)? Recently, Gupta & Touretzky
(1991) have shown that perceptrons can learn to as-
sign stress to syllable sequences from 19 natural lan-
guages (apparently encompassing the range of possible
stress systems). The present approach would attempt to
achieve this in the context of the hierarchical architec-
ture referred to above, by training a sequential network
which takes distributed syllable representations (one
at a time) as input to recognize words involving one
or more metrical units (sequences of stressed and un-
stressed syllables). The hope would be that distributed
representations for these units, and eventually for the
entire words, would arise, and that these would provide
the input to the word production process, where stress
assignment takes place. While considerably more in-
volved than the approach of Gupta & Touretzky (1991),
this would respect the sequential nature of language
and maintain the relationship between word recogni-
tion and phonological learning.

A further weakness of the framework in its current
state involves the learning of production. While the
learning of syllable representations as a side-effect of
the process of word (or morpheme) recognition seems
reasonable, the learning of the reverse process is an-
other matter. The network trained on the production
task was provided with targets for each output phone, a
degree of supervision that clearly does not correspond
to anything in the experience of the human language
learner. For now it may be best to view this task as

1In some preliminary experiments, I have not found better
performance on word recognition from networks which are
also expected to predict their next sequence.

nothing more than an existence proof that the represen-
tations can be unpacked for production or alternatively
a technique for analyzing the distributed representa-
tions, which, unlike their symbolic counterparts, are
not directly interpretable. Of course, the issue of how
children learn to produce, as well as perceive, linguis-
tic forms, when they are not provided with targets, is
one facing any approach to language acquisition.

Finally, the present approach presupposes some
mechanism for segmentation, first, at the level of the
phones that are the inputs to the recognition process,
and second, at the level of the syllables (or words)
themselves. Again, segmentation is a problem for all
sorts of acquisition models. Recently Doutriaux &
Zipser (1990) have had some success in training sim-
ple recurrent networks to discover segments in speech.
Thus this seems to be a problem that can be approached
within the framework outlined in this paper.
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