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Abstract

This paper describes a modular connectionist model
of the acquisition of receptive in
ectional morphology.
The model takes inputs in the form of phones one
at a time and outputs the associated roots and in-

ections. Simulations using arti�cial language stimuli
demonstrate the capacity of the model to learn su�x-
ation, pre�xation, in�xation, circum�xation, mutation,
template, and deletion rules. Separate network mod-
ules responsible for syllables enable to the network to
learn simple reduplication rules as well. The model also
embodies constraints against association-line crossing.

Introduction

For many natural languages, a major problem for a lan-
guage learner, whether human or machine, is the system
of bound morphology of the language, which may carry
much of the functional load of the grammar. While the
acquisition of morphology has sometimes been seen as
the problem of learning how to transform one linguis-
tic form into another form, e.g., by [8] and [10], from
the learner's perspective, the problem is one of learning
how forms map onto meanings. Most work which has
viewed the acquisition of morphology in this way, e.g.,
[1], has taken the perspective of production. But a hu-
man language learner almost certainly learns to under-
stand polymorphemic words before learning to produce
them, and production may need to build on perception
[6]. Thus it seems reasonable to begin with a model of
the acquisition of receptive morphology.
In this paper, I will deal with that component of re-

ceptive morphology which takes sequences of phones,
each expressed as a vector of phonetic features, and
identi�es them as particular morphemes. This process
ignores the segmentation of words into phone sequences,
the morphological structure of words, and the the se-
mantics of morphemes. I will refer to this task as root
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and in
ection identi�cation. It is assumed that children
learn to identify roots and in
ections through the pre-
sentation of paired forms and sets of morpheme mean-
ings. They show evidence of generalization when they
are able to identify the root and in
ection of a novel
combination of familiar morphemes.

At a minimum, a model of the acquisition of this
capacity should succeed on the full range of morpho-
logical rule types attested in the world's languages,
it should embody known constraints on what sorts of
rules are possible in human language, and it should
bear a relationship to the production of morphologi-
cally complex words. This paper describes a psycho-
logically motivated connectionist model (Modular Con-
nectionist Network for the Acquisition of Morphology,
MCNAM) which shows evidence of acquiring all of the
basic rule types and which also experiences relative dif-
�culty learning rules which seem not to be possible.
In another paper [4], I show how the representations
that develop during the learning of root and in
ection
identi�cation can support word production. Although
still tentative in several respects, MCNAM appears to
be the �rst computational model of the acquisition of
receptive morphology to apply to this diversity of mor-
phological rules. In contrast to symbolic models of lan-
guage acquisition, it succeeds without built-in symbolic
distinctions, for example, the distinction between stem
and a�x.

The paper is organized as follows. I �rst provide a
brief overview of the categories of morphological rules
found in the world's languages. I then present the
model and discuss simulations which demonstrate that
it generalizes for most kinds of morphological rules.
Next, focusing on template morphology, I show how the
network implements the analogue of autosegments and
how the model embodies one constraint on the sorts of
rules that can be learned. Finally, I discuss augmenta-
tion of the model with a hierarchical structure re
ect-
ing the hierarchy of metrical phonology; this addition
is necessary for the acquisition of the most challenging
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type of morphological rule, reduplication.

Categories of Morphological Processes

For the sake of convenience, I will be discussing mor-
phology in terms of the conventional notions of roots,
in
ections, and rules. However, a human language
learner does not have direct access to the root for a
given form, so the problem of learning morphology can-
not be one of discovering how to add to or modify a
root. And it is not clear whether there is anything like
a symbolic morphological rule in the brain of a language
learner.
The following kinds of in
ectional or derivational

morphological rules are attested in the world's lan-
guages: a�xation, by which a grammatical morpheme
is added to a root (or stem), either before (pre�xation),
after (su�xation), both before and after (circum�xa-

tion), or within (in�xation); mutation, by which one
or more root segments themselves are modi�ed; tem-

plate rules, by which a word can be described as a
combination of a root and a template specifying how
segments are to be intercalated between the root seg-
ments; deletion, by which one or more segments are
deleted; reduplication, by which a copy, or a systemat-
ically and altered copy, of some portion of the root is
added to it. Examples of each rule type are included in
the description of the stimuli used in the simulations.

The Model

The approach to language acquisition exempli�ed in
this paper di�ers from traditional symbolic approaches
in that the focus is on specifying the sort of mecha-

nism which has the capacity to learn some aspect of
language, rather than the knowledge which this seems
to require. Given the basic problem of what it means
to learn receptive morphology, the goal is to begin with
a very simple architecture and augment it as necessary.
In this paper, I �rst describe a version of the model
which is modular with respect to the identi�cation of
root and in
ections. The advantages of this version over
the simpler model in which these tasks are shared by
the same hidden layer is described in a separate paper
[5]. Later I discuss a version of the model which in-
corporates modularity at the level of the syllable and
metrical foot; this is required to learn reduplication.
The model described here is connectionist. There

are several reasons why one might want to investigate
language acquisition from the perspective of connec-
tionism. For the purposes of this paper, the most im-
portant is the hope that a connectionist network, or a
device making use of a related statistical approach to
learning, may have the capacity to learn a task such
as word recognition without pre-wired symbolic knowl-

edge. That is, such a model would make do without
pre-existing concepts such as root and a�x or distinc-
tions such as regular vs. irregular morphology. If suc-
cessful, this model would provide a simpler account of
the acquisition of morphology than one which begins
with symbolic knowledge and constraints.
Words takes place in time, and a psychologically

plausible account of word recognition must take this
fact into account. Words are often recognized long be-
fore they �nish; hearers seem to be continuously com-
paring the contents of a linguistic short-term memory
with the phonological representations in their mental
lexicons [7]. Thus the task at hand requires a short-
term memory of some sort. Of the various ways of rep-
resenting short-term memory in connectionist networks
[9], the most 
exible approach makes use of recurrent
connections on hidden units. This has the e�ect of turn-
ing the hidden layer into a short-term memory which is
not bounded by a �xed limit on the length of the period
it can store. The model to be described here is one of
the simpler possible networks of this type, a version of
the simple recurrent network due to [2].
The Version 1 network is shown in Figure 1 Each box

represents a layer of connectionist processing units and
each arrow a complete set of weighted connections be-
tween two layers. The network operates as follows. A
sequence of phones is presented to the input layer one
at a time. That is, each tick of the network's clock rep-
resents the presentation of a single phone. Each phone
unit represents a phonetic feature, and each word con-
sists of a sequence of phones preceded by a boundary
\phone" consisting of 0.0 activations.

phone

phone

root inflection

infl hiddenroot hidden

Figure 1: MCNAM: Version 1

An input phone pattern sends activation to the net-
work's hidden layers. Each hidden layer also receives
activation from the pattern that appeared there on the
previous time step. Thus each hidden unit is joined by a
time-delay connection to each other hidden unit within
its layer. It is the two previous hidden-layer patterns
which represent the system's short-term memory of the

2



phonological context. At the beginning of each word se-
quence, the hidden layers are reinitialized to a pattern
consisting of 0.0 activations.
Finally the output units are activated by the hidden

layers. There are at least three output layers. One
represents simply a copy of the current input phone.
Training the network to auto-associate its current in-
put aids in learning the root and in
ection identi�ca-
tion task because it forces the network to learn to dis-
tinguish the individual phones at the hidden layers, a
prerequisite to using the short-term memory e�ectively.
The second layer of output units represents the root
\meaning". For each root there is a single output unit.
Thus while there is no real semantics, the association
between the input phone sequence and the \meaning"
is an arbitrary one. The remaining groups of output
units represent the in
ection \meaning"; one group is
shown in the �gure. There is a layer of units for each
separate in
ectional category (e.g., tense and aspect)
and a unit for each separate in
ection within its layer.
One of the hidden layers connects to the root output
layer, the other to the in
ection output layers.
For each input phone, the network receives a tar-

get consisting of the correct phone, root, and in
ection
outputs for the current word. The phone target is iden-
tical to the input phone. The root and in
ection tar-
gets, which are constant throughout the presentation of
a word, are the patterns associated with the root and
in
ection for the input word.
The network is trained using the backpropagation

learning algorithm [11], which adjusts the weights on
the network's connections in such a way as to minimize
the error, that is, the di�erence between the network's
outputs and the targets. For each morphological rule,
a separate network is trained on a subset of the pos-
sible combinations of root and in
ection. At various
points during training, the network is tested on unfa-
miliar words, that is, novel combinations of roots and
in
ections. The performance of the network is the per-
centage of the test roots and in
ections for which its
output is correct at the end of each word sequence. An
output is considered \correct" if it is closer to the cor-
rect root (or in
ection) than to any other. The network
is evaluated at the end of the word because in general it
may need to wait that long to have enough information
to identify both root and in
ection.

Experiments

General Performance of the Model

In all of the experiments reported on here, the stim-
uli presented to the network consisted of words in an
arti�cial language. The phoneme inventory of the lan-
guage was made up 19 phones (24 for the mutation

rule, which nasalizes vowels). For each morphological
rule, there were 30 roots, 15 each of CVC and CVCVC
patterns of phones. Each word consisted of either two
or three morphemes, a root and one or two in
ections
(referred to as \tense" and \aspect" for convenience).
Examples of each rule, using the root vibun: (1) suf-
�x: present{vibuni , past{vibuna; (2) pre�x: present{
ivibun, past{avibun; (3) in�x: present{vikbun, past{
vinbun; (4) circum�x: present{ivibuni , past{avibuna;
(5) mutation: present{vibun, past{vib~un; (6) deletion:
present{vibun, past{vibu; (7) template: present{vaban,
past{vbaan; (8) two-su�x: present perfect{vibunak ,
present progressive{vibunas , past perfect{vibunik , past
progressive{vibunis ; (9) two-pre�x: present perfect{
kavibun, present progressive{kivibun, past perfect{
savibun, past progressive{sivibun; (10) pre�x-su�x:
present perfect{avibune, present progressive{avibunu,
past perfect{ovibune, past progressive{ovibunu. No ir-
regular forms were included.

For each morphological rule there were either 60 (30
roots � 2 tense in
ections) or 120 (30 roots � 2 tense
in
ections � 2 aspect in
ections) di�erent words. From
these 2/3 were selected randomly as training words, and
the remaining 1/3 were set aside as test words. For each
rule, ten separate networks with di�erent random initial
weights were trained and tested. Training for the tense-
only rules proceeded for 150 epochs (repetitions of all
training patterns); training for the tense-aspect rules
lasted 100 epochs. Following training the performance
of the network on the test patterns was assessed.

Figure 2. shows the mean performance of the net-
work on the test patterns for each rule following train-
ing. Note that chance performance for the roots was
.033 and for the in
ections .5 since there were 30 roots
and 2 in
ections in each category. For all tasks, in-
cluding both root and in
ection identi�cation the net-
work performs well above chance. Performance is far
from perfect for some of the rule types, but further im-
provement is possible with optimization of the learning
parameters.

Interestingly, template rules, which are problematic
for some symbolic approaches to morphology processing
and acquisition, are among the easiest for the network.
Thus it is informative to investigate further how the
network solved this task. For the particular template
rule, the two forms of each root shared the same initial
and �nal consonant. This tended to make root identi-
�cation relatively easy. With respect to in
ections, the
pattern is more like in�xation than pre�xation or su�x-
ation because all of the segments relevant to the tense,
that is, the /a/s, are between the �rst and last segment.
But in
ection identi�cation for the template is consid-
erably higher than for in�xation, probably because of
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Figure 2: Performance on Test Words Following Training

the redundancy: the present tense is characterized by
an /a/ in second position and a consonant in third po-
sition, the past tense by a consonant in second position
and an /a/ in third position.

To gain a better understanding of the way in which
the network solves a template morphology task, a fur-
ther experiment was conducted. In this experiment,
each root consisted of a sequence of three consonants
from the set /p, b, m, t, d, s, n, k, g/. There were
three tense morphemes, each characterized by a partic-
ular template. The present template was C1aC2aC3a,
the past template aC1C2aaC3, and the future template
aC1aC2C3a. Thus the three forms for the root pmn

were pamana, apmaan, and apamna. The network
learns to recognize the tense templates very quickly;
generalization is over 90% following only 25 epochs of
training. This task is relatively easy since the vowels
appear in the same sequential positions for each tense.
More interesting is the performance of the root identi-
�cation part of the network, which must learn to rec-
ognize the commonality among sequences of the same
consonants even though, for any pair of forms for a
given root, only one of the three consonants appears
in the same position. Performance reaches 72% on the
test words following 150 epochs.

To better visualize the problem, it helps to examine
what happens in hidden-layer space for the root layer
as a word is processed. This 15-dimensional space is
impossible to observe directly, but we can get an idea
of the most signi�cant movements through this space
through the use of principal component analysis, a tech-
nique which is by now a familiar way of analyzing the
behavior of recurrent networks [3, 9]. Given a set of
data vectors, principal component analysis yields a set
of orthogonal vectors, or components, which are ranked
in terms of how much of the variance in the data they
account for.
Principal components for the root identi�cation hid-

den layer vectors were extracted for a single network
following 150 repetitions of the template training pat-
terns. The paths through the space de�ned by the �rst
two components of the root identi�cation hidden layer
as the three forms of the root pds are presented to the
network are shown in Figure 3. Points marked in the
same way represent the same root consonant.1 What we
see is that, as the root hidden layer processes the word,
it passes through roughly similar regions in hidden-layer

1Only two points appear for the �rst root consonant be-
cause the �rst two segments of the past and future forms of
a given root are the same.
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space as it encounters the consonants of the root, inde-
pendent of their sequential position. In a sense these
regions correspond to the autosegments of autosegmen-
tal phonological and morphological analyses.

Constraints on Morphological Processes

In the previous sections, I have described how mod-
ular simple recurrent networks have the capacity to
learn to recognize morphologically complex words re-
sulting from a variety of morphological processes. But
is this approach too powerful? Can these networks
learn rules of types that people cannot? While it is
not completely clear what rules people can and can-
not learn, some evidence in this direction comes from
examining large numbers of languages. One possible
constraint on morphological rules comes from autoseg-
mental analyses: the association lines that join one tier
to another should not cross. Another way of stating
the constraint is to say that the relative position of two
segments within a morpheme remains the same in the
di�erent forms of the word.

Can a recognition network learn a rule which vio-
lates this constraint as readily as a comparable one
which does not? To test this, separate networks were
trained to learn the following two template morphology
rules, involving three forms: (1) present: C1aC2aC3a,
past: aC1C2aaC3, future: aC1aC2C3a (2) present:
C1aC2C3aa, past: aC1C2aC3a, future: aC1aC3aC2.
Both rules produce the three forms of each root using
the three root consonants and sequences of three a's.
In each case each of the three consonants appears in
the same position in two of the three forms. The sec-
ond rule di�ers from the �rst in that the order of the
three consonants is not constant; the second and third
consonant of the present and past forms reverse their
relative positions in the future form. In the terms of a
linguistic analysis, the root consonants would appear in
one order in the underlying representation of the root
(preserved in the present and past forms) but in the
reverse order in the future form. The underlying order
is preserved in all three forms for the �rst rule. I will
refer to the �rst rule as the \favored" one, the second
as the \disfavored" one.

In the experiments testing the ease with which these
two rules were learned, a set of thirty roots was again
generated randomly. Each root consisted of three con-
sonants limited to the set: fp, b, m, t, d, n, k, gg. As
before, the networks were trained on 2/3 of the possi-
ble combinations of root and in
ection (60 words in all)
and tested on the remaining third (30 words). Separate
networks were trained on the two rules. Mean results
for 10 di�erent networks for each rule are shown in Fig-
ure 4. While the disfavored rule is learned to some ex-

tent, there is a clear advantage for the favored over the
disfavored rule with respect to generalization for root
identi�cation. Since the in
ection is easily recognized
by the pattern of consonants and vowels, the order of
the second and third root consonants is irrelevant to in-

ection identi�cation. Root identi�cation, on the other
hand, depends crucially on the sequence of consonants.
With the �rst rule, in fact, it is possible to completely
ignore the CV templates and pay attention only to the
root consonants in identifying the root. With the sec-
ond rule, however, the only way to be sure which root
is intended is to keep track of which sequences occur
with which templates. With the two possible roots ftn
and fnt , for example, there would be no way of knowing
which root appeared in a form not encountered during
training unless the combination of sequence and tense
had somehow been attended to during training. In this
case, the future of one root has the same sequence of
consonants as the present and past of the other. Thus,
to the extent that roots overlap with one another, root
identi�cation with the disfavored rule presents a harder
task to a network. Given the relatively small set of
consonants in these experiments, there is considerable
overlap among the roots, and this is re
ected in the
poor generalization for the disfavored rule. Thus for
this word recognition network, a rule which apparently
could not occur in human language is somewhat more
di�cult than a comparable one which could.

Reduplication

We have yet to deal with reduplication. The parsing of
an unfamiliar word involving reduplication apparently
requires the ability to notice the similarity between the
relevant portions of the word. For the networks we have
considered so far, recognition of reduplication would
seem to be a di�cult, if not an impossible, task. Con-
sider the case in which a network has just heard the
sequence tamkam. At this point we would expect a hu-
man listener to be aware that the two syllables rhymed,
that is, that they had the same vowel and �nal conso-
nant (rime). But at the point following the second m,
the network does not have direct access to representa-
tions for the two subsequences to be compared. If it
has been trained to identify sequences like tamkam, it
will at this point have a representation of the entire se-
quence in its contextual short-term memory. However,
this representation will not distinguish the two sylla-
bles, so it is hard to see how they might be compared.

To test whether Version 1 of the model could handle
reduplication, networks were trained to perform in
ec-
tion identi�cation only. The stimuli consisted of two-
syllable words, where the initial consonant (the onset)
of each syllable came from the set /p, b, f, v, m, t, d, s,
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z, n, k, g, x, gh, ng2/, the vowel from the set /i, e, u, o,
a/, and the �nal consonant, when there was one, from
the set /n, s/. Separate networks were trained to turn
on their single output unit when the onsets of the two
syllables were the same and when the rimes were the
same. The training set consisted of 200 words. In each
case, half of the sequences satis�ed the reduplication
criterion. Results of the two experiments are shown in
Figure 5 by the lines marked \Seq". Clearly these net-
works failed to learn this relatively simple reduplication
task. While these experiments do not prove conclu-
sively that a recurrent network, presented with words
one segment at a time, cannot learning reduplication, it
is obvious that this is a di�cult task for these networks.

In a sequential network, input sequences are realized
as movements through state space. It appears, how-
ever, that recognition of reduplication requires the ex-
plicit comparison of static representations of the sub-
sequences in question, e.g., for syllables in the case of
syllable reduplication. If a simple recurrent network is
trained to identify, that is, to distinguish, the syllables
in a language, then the pattern appearing on the hid-
den layer following the presentation of a syllable must
encode all of the segments in the syllable. It is, in e�ect,

2/gh/ represents a voiced velar fricative, /ng a velar nasal

a summary of the sequence that is the syllable.

It is a simple matter to train a network to distinguish
all possible syllables in a language. We treat the syl-
lables as separate words in a network like the ones we
have been dealing with, but with no in
ection module.
A network of this type was trained to recognize all 165
possible syllables in the same arti�cial language used
in the experiment with the sequential network. When
presented to the network, each syllable sequence was
followed by a boundary segment.

The hidden-layer pattern appearing at the end of
each syllable-plus-boundary sequence was then treated
as a static representation of the syllable sequence for
a second task. Previous work [4] has shown that these
representations embody the structure of the input se-
quences in ways which permit generalizations. In this
case, the sort of generalization which interests us con-
cerns the recognition of similarities between syllables
with the same onsets or rimes. Pairs of these syllable
representations, encoding the same syllables as those
used to train the sequential network in the previous
experiment, were used as inputs to two simple feedfor-
ward networks, one trained to respond if its two input
syllables had the same onset, the other trained to re-
spond if the two inputs had the same rime, that is, the
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same rules trained in the previous experiment. Again
the training set consisted of 200 pairs of syllables, the
test set of 50 pairs in each case. Results of these ex-
periments are shown in Figure 5 by the lines labeled
\FF". Although performance is far from perfect, it is
clear that these networks have made the appropriate
generalization. This means that the syllable represen-
tations encode the structure of the syllables in a form
which enables the relevant comparisons to be made.

What I have said so far about reduplication, how-
ever, falls far short of an adequate account. First, there
is the problem of how the network is to make use of
static syllable representations in recognizing reduplica-
tion. That is, how is access to be maintained to the
representation for the syllable which occurred two or
more time steps back? For syllable representations to
be compared directly, a portion of the network needs to
run, in a sense, in syllable time. That is, rather than
individual segments, the inputs to the relevant portion
of the network need to be entire syllable representa-
tions. Combining this with the segment-level inputs
that we have made use of in previous experiments gives
a hierarchical architecture like that shown in Figure 6.
In this network, word recognition, which takes place
at the output level, can take as its input both segment

and syllable sequences. The segment portion of the net-
work, appearing on the left in the �gure, is identical to
what we have seen thus far. (Hidden-layer modularity
is omitted from the �gure to simplify it.) The syllable
portion, on the right, runs on a di�erent \clock" from
the segment portion. In the segment portion activation
is passed forward and error backward each time a new
segment is presented to the network. In the syllable
portion this happens each time a new syllable appears.
(The di�erent update clock is indicated by the dashed
arrows in the �gure.) Just as the segment subnetwork
begins with context-free segment representations, the
syllable subnetwork takes as inputs context-free sylla-
bles. This is achieved by replacing the context (that is,
the recurrent input to the syllable layer) by a bound-
ary pattern at the beginning of each new syllable.
There remains the question of how the network is

to know when one syllable ends and another begins.
Unfortunately this interesting topic is beyond the scope
of this project.

Conclusions

Can connectionist networks which are more than unin-
teresting implementations of symbolic models learn to
generalize about morphological rules of di�erent types?

7



0 40 80 120 160

P
ro

po
rt

io
n 

co
rr

ec
t

0.4

0.5

0.6

0.7

0.80.8

FF.Rime Redup

FF.Onset Redup

Seq.Onset Redup

Seq.Rime Redup

Chance

Epochs of training

Figure 5: Reduplication Rules, Sequential and Feedforward Networks Trained with Distributed Syllables

segment

root inflection

hidden1

hidden2

syllable

Figure 6: MCNAM: Version 2

Much remains to be done before this question can be an-
swered, but, for receptive morphology at least, the ten-
tative answer is yes. In place of built-in knowledge, e.g,
linguistic notions such as a�x and tier and constraints
such as the prohibition against association line crossing,
we have processing and learning algorithms and partic-
ular architectural features, e.g., recurrent connections
on the hidden layer and modular hidden layers. Some
of the linguistic notions may prove unnecessary alto-
gether. For example, there is no place or state in the
current model which corresponds to the notion a�x.

Others may be realized very di�erently from the way
in which they are envisioned in conventional models.
An autosegment, for example, corresponds roughly to a
region in hidden-layer space in MCNAM. But this is a
region which took on this signi�cance only in response
to the set of phone sequences and morphological targets
which the network was trained on.
Language is a complex phenomenon. Connectionists

have sometimes been guilty of imagining naively that
simple, uniform networks would handle the whole spec-
trum of linguistic phenomena. The tack adopted in this
project has been to start simple and augment the model
when this is called for. MCNAM in its present form is
almost certain to fail as a general model of morphol-
ogy acquisition and processing, but these early results
indicate that it is on the right track. In any case, the
model yields many detailed predictions concerning the
di�culty of particular morphological rules for partic-
ular phonological systems, so an obvious next step is
psycholinguistic experiments to test the model.
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