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The dynamic nature of percolation on
networks with triadic interactions

Hanlin Sun 1, Filippo Radicchi 2, Jürgen Kurths 3,4 &Ginestra Bianconi 1,5

Percolation establishes the connectivity of complex networks and is one of the
most fundamental critical phenomena for the study of complex systems. On
simple networks, percolation displays a second-order phase transition; on
multiplex networks, the percolation transition can become discontinuous.
However, little is known about percolation in networks with higher-order
interactions. Here, we show that percolation can be turned into a fully fledged
dynamical process when higher-order interactions are taken into account. By
introducing signed triadic interactions, in which a node can regulate the
interactions between two other nodes, we define triadic percolation. We
uncover that in this paradigmatic model the connectivity of the network
changes in time and that the order parameter undergoes a period doubling
and a route to chaos.Weprovide a general theory for triadic percolationwhich
accurately predicts the full phase diagram on random graphs as confirmed by
extensive numerical simulations. We find that triadic percolation on real net-
work topologies reveals a similar phenomenology. These results radically
change our understanding of percolation and may be used to study complex
systems in which the functional connectivity is changing in time dynamically
and in a non-trivial way, such as in neural and climate networks.

Percolation1–4 is one of the most fundamental critical phenomena
defined on networks. As such, it has attracted large interest in the
literature5–14. Indeed by predicting the size of the giant component
(GC) of a network when links are randomly damaged, percolation can
be used for the establishment of the minimal requirements that a
structural network should satisfy in order to support any type of
interactive process. Despite the great success of percolation, ordinary
percolation is unsuitable to describe real-world situations that occur in
neuronal and climate networks when the connectivity of these net-
works changes in time.

Typically, the dynamics associated to percolation is the one of a
cascading process where an initial failure propagates within a network
possibly affecting its macroscopic connectedness. In the last decade,
large scientific activity has been addressed to generalized percolation
problems that capture cascades of failure events5,15–20 on multilayer

networks21–23 where the damage propagates back and forth among the
layers reaching a steady state at the end of the cascading process. In
duplex networks, period-two oscillations can be observed in presence
of competitive or antagonistic interactions24–28 among the different
layers of themultiplex networks. However, this phenomenon seems to
be restricted to duplex networks. Finally in damage and recovery
models on multilayer networks26,29,30 aimed at getting insight for the
robustness of complex critical infrastructures and financial systems,
also more than two coexisting stable configurations of percolation
have been observed.

An important question that arises from these works is whether
percolation can capture more general time-dependent variations in
the connectivity of a network. Here, we give a positive answer to this
question and we show that higher-order interactions, and specifically
triadic interactions, can turn percolation into a fully fledged dynamical
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process in which the order parameter undergoes period doubling and
a route to chaos.

Higher-order networks are ubiquitous in nature31–36. Paradigmatic
examples are the networks that describe brain activity, chemical
reactions networks, and climate37–41. Higher-order interactions may
profoundly change the physical properties of a dynamical process
compared to those displayed by the same process occurring on a
classic network of pairwise interactions. Examples include
synchronization42–45, randomwalk dynamics46, contagiondynamics47–52

and game theory53. However little is known so far about percolation in
presence of higher-order interactions51,54–58.

In this paper, we focus on a paradigmatic type of higher-order
interactions named triadic interactions which occur when a node
regulates the interaction between two other nodes. Regulation can be
either positive, in the sense that the node facilitates the interaction, or
negative, meaning that the regulator inhibits the interaction. Triadic
interactions occur in ecosystems, where the competition between two
species can be affected by the presence of a third species59–61. In neu-
ronal networks, the interactions between neurons/glia is known to be
triadic with glias modulating the synaptic interaction between
neurons62. In climate networks of extreme rainfall events, triadic
interactions can be used to explain the situations inwhich the network
links are modulated by large-scale patterns, such as Rossby waves,
which have a regulatory activity on climate inducing long-range syn-
chronization of rainfall between Europe, Central Asia and even East
Asia40. Finally in chemical reaction networks, generalized triadic
interactions could model the action of enzymes as biological catalysts
for biochemical reactions. While triadic interactions have received
large attention in ecology and neuroscience, theoretical analyses of
triadic interactions have investigated exclusively small-scale ecological
systems59–61.

Here, we change perspective and study the role of triadic inter-
actions in shaping macroscopic network properties. Specifically, we
investigate how triadic interactions can change the critical and the
dynamical properties of percolation.We combine percolation theory1,3

with the theory of dynamical systems63–66 to define triadic percolation,
i.e., percolation in presence of signed triadic interactions. We show
that in triadic percolation the GC of the network displays a highly non-

trivial dynamics characterized by period doubling and a route to
chaos. We use a general theory to demonstrate that the phase diagram
of triadic percolation has fundamental differences with the phase
diagram of ordinary percolation. While ordinary percolation displays a
second-order phase transition, the phase diagram of triadic percola-
tion is much richer and can be interpreted as an orbit diagram for the
order parameter. Our theory is validatedwith extensive simulations on
synthetic and real-world networks. These results reveal that in triadic
percolation the GC of the network becomes a dynamical entity whose
dynamics changes radically our understanding of percolation.

Results
Triadic interactions
Triadic interactions (see Fig. 1) are higher-order interactions between
nodes and links. They occur when a node regulates the interaction
between two other nodes. The regulation can be either positive, in the
sense that the node facilitates the interaction, or negative, meaning
that the regulator inhibits the interaction. For instance, the presence of
a third species can enhance or inhibit the interaction between two
species; also, the presence of a glia can favor or inhibit the synaptic
interactions between two neurons. Triadic interactions can be added
to a simple structural network. However, triadic interactions can also
be introduced on top of an hypergraph, when one node regulates the
strength of an hyperedge, or on top of multilayer networks, where
triadic interactions represent inter-layer interactions between the
nodes of one layer and the links of other layer. For instance, an enzyme
is a node that can regulate an hyperedge (i.e., a reaction between
chemicals); neural networks and networks of glias form instead two
layers of a multiplex network interacting via triadic interactions.

Let us now formulate the simplest example of higher-order net-
works with triadic interactions. This higher-order network can be
modeled as the composition of two networks: the structural network
and the regulatory network which encodes triadic interactions. The
structural networkA= ðV , EÞ is formedby the set of nodesV connected
by the structural links in the set E. The regulatory networkB = ðV , E,W Þ
is a bipartite, signed network between the set of nodes V of the
structural network and the set of structural links E, with nodes in V
regulating links in E on the basis of the regulatory interactions, either
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Fig. 1 | Triadic interactions. Triadic interactions occur when a node regulates the
interactions between two other nodes. Triadic interactions can be signed with one
node either favoring (green dashed link) or inhibiting (red dashed link) the inter-
actions between the other to nodes (a). The simplest network including triadic
interactions (b) is formed by a structural network between nodes and (solid line)
structural links and a regulatory network including the regulatory interactions
(dashed lines) between nodes and structural links. Examples of triadic interactions

(c) include glias/neurons interactions and interactions between species in ecosys-
tems. Triadic interactions can be extended to hypergraphs andmultiplex networks
(d). In hypergraphs the triadic interactions can regulate the presence or the activity
of an hyperedge, inmultiplex networks triadic interactions can be used to establish
inter-layer interactions between nodes in one layers and links in the other layer. The
plant icons are made by Freepik from www.flaticon.com.
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positive or negative, specified in the set W. Given a regulated link, a
node at the end of the regulatory interaction is called positive reg-
ulator if the regulatory interaction is positive and negative regulator if
the regulatory interaction is negative. Note that the sign is an attribute
of the regulatory interaction and not of the node that acts as regulator.

In the following we will focus on percolation on this model of
network with triadic interactions, however our results can be easily
extended to hypergraphs and multiplex networks with triadic inter-
actions as well.

Triadic percolation
We define triadic percolation as the model in which the activity of the
structural links is regulated by the triadic interactions and the activity
of their regulator nodes. Conversely, the activity of the nodes is dic-
tated by the connectivity of the network resulting after considering
only the active links. In particular, we assume that the activity of nodes
and links is changing in time leading to the triadic percolation process
defined as follows. At time t = 0, every structural link is active with
probability p0. We then iterate the following algorithm for each time
step t ≥ 1:

• Step 1. Given the configuration of activity of the structural links
at time t − 1, we define each node active if the node belongs to
the GC of the structural network in which we consider only
active links. The node is considered inactive otherwise.

• Step 2. Given the set of all active nodes obtained in step 1, we
deactivate all the links that are connected at least to one active
negative regulator node and/or that are not connected to any
active positive regulator node. All the other links are deactivated
with probability q = 1 − p.

Note that for p = p0 = 1 the model is deterministic. However, for
p < 1 (and p0 < 1) the model is stochastic, i.e., the activity of the nodes
does not uniquely define the activity of the links.

In the proposed triadic percolation, links can be dynamically
turned on and off by the regulatory interactions. The model only
makes minimal and justifiable assumptions while remaining general.
The assumption that only nodes within the GC of the network are
considered functioning/active is well accepted in the literature con-
cerning network robustness1,5. Also, the regulatory rule chosen for
deactivating the links is the minimal rule for treating both positive/
negative regulations in a symmetric way: given suitable conditions the
activation of a single positive regulator or the deactivation of a single
negative regulator can turn the activity of a link on. Finally, the intro-
duction of annealed stochastic effects, present for p < 1 (and p0 < 1),
represents a simple way to account for the unavoidable randomness
that can affect the activation/deactivation of the structural links in real
scenarios.

Triadic percolation can lead to a highly non-trivial dynamics of the
network connectivity. For instance Fig. 2 illustrates the phenomenon
of network “blinking” with nodes of the network turning on and off
periodically to form GCs of different size. As we will see, this dynamics
emerges at the bifurcation transition indicating the onset of the
period-two oscillations of the order parameter, but oscillations of
longer period and also chaos is observed depending on the model’s
parameters.

Theory of triadic percolation
Here we establish the theory for triadic percolation that is able to
predict the phase diagram of the model on random networks with
triadic interactions.

We assume that the structural networkA is given and contains N
nodes and 〈k〉N/2 structural links, with 〈k〉 indicating the average
degree of the network. We consider structural networks given by
individual instances of the configuration model. To this end, we first
generate degree sequences by selecting random variables from the

degree distribution π(k). We denote with ki the structural degree of
node i.

To generate the regulatory network B, we assume that every node
i has associated two degree values, namely the number of positive
regulatory interactions κ +

i , and the number of negative regulatory
interactions κ�

i . For simplicity we consider the case in which both κ +
i

and κ�
i are chosen independently of the structural degree ki (see the SI

for the extension to the correlated case). Each structural link ℓ is
assigned the degrees κ̂ +

‘ and κ̂�
‘ indicating the number of positive

regulators and the number of negative regulators, respectively. In
particular, nodes’ degrees are extracted at random from the distribu-
tion P(κ+, κ−), and links’ degrees are randomly extracted from the dis-
tribution P̂ðκ̂ + , κ̂�Þ here taken to be uncorrelated so that
P̂ðκ̂ + , κ̂�Þ= P̂ + ðκ̂ + ÞP̂�ðκ̂�Þ. Once degrees have been assigned to nodes
and links, we establish the existence of a positive (+) or negative (−)
regulatory interaction between the structural link ℓ and the node iwith
probability:

p ±
‘,i =

κ ±
i κ̂

±
‘

hκ ± iN , ð1Þ

where 〈κ±〉 denotes the average of κ over all the nodes of the network.
In the creation of regulatory interactions, we allow any pair (ℓ, i) to be
connected either by a positive of by a negative regulatory interaction
but not by both. Note that as long as the network B is large and sparse
the latter condition is not inducing significant correlations.

Let us now combine the theory of percolation with the theory of
dynamical systems to derive the phase diagram of the considered
uncorrelated scenario. Let us define S(t) as the probability that a node at
the endpoint of a random structural link of the networkA is in the GC
at time t.Moreover, let us indicate byR(t) the fractionof nodes in theGC
at time t (or equivalently the probability that a node at the end of a
regulatory link is active). Finally, pðt�1Þ

L is the probability that a random
structural link is active at time t. By putting pð0Þ

L =p0 indicating the
probability that structural links are active at time t =0, we have that for
t >0, as long as the network is locally tree like, S(t), R(t) and pðtÞ

L are
updated as:

SðtÞ = 1� G1 1� SðtÞpðt�1Þ
L

� �
,

RðtÞ = 1� G0 1� SðtÞpðt�1Þ
L

� �
,

pðtÞ
L =pG�

0 ð1� RðtÞÞ 1� G+
0 1� RðtÞ
� �h i

,

ð2Þ

where the first two equations implement Step 1, i.e., a bond-
percolation model1 where links are retained with probability pðt�1Þ

L ,
and the third equation implements Step 2, i.e., the regulation of the
links. Here the generating functions G0(x),G1(x) and G0

± ðxÞ are given
by:

G0ðxÞ=
P
k
πðkÞxk , G1ðxÞ=

P
k
πðkÞ k

hki x
k�1,

G0
± ðxÞ= P

κ ±

P̂± ðκ̂ ± Þxκ̂ ±

:
ð3Þ

Equation (2) for the percolation model regulated by triadic interac-
tions can be formally written as the map65:

RðtÞ = f pðt�1Þ
L

� �
, pðtÞ

L = gp RðtÞ
� �

, ð4Þ

which can be further reduced to a unidimensional map R(t) = h(R(t−1)).
The previous set of equations lead to the theoretical prediction for
triadic percolation defined on structural networks generated accord-
ing to the configuration model. This solution are of mean-field nature:
while triadic percolation dynamics has many interacting degrees of
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freedom given by the activity of each node and each link, and is
characterizedby a stochastic dynamics forp < 1, Eq. (2) [or equivalently
the map Eq. (4)] involves only three/two variables and are determinis-
tic. As we will see, despite this approximations, the proposed
theoretical approach provides a very accurate prediction of the
behavior of triadic percolation.

In presence of negative interactions, triadic percolation displays a
time-dependent order parameter, given by the active fraction of nodes
R(t). TheorderparameterR(t) undergoes aperioddoubling anda route to
chaos in theuniversality class of the logisticmap for structural networks
with arbitrary degree distribution π(k) and regulatory connectivity
generated by Poisson distributions Pðκ̂ ± Þ (see SI and Supplementary
Figs. 1–5 for details). Triadic percolation has a very rich dynamical
nature and displays the emergence of both “blinking” oscillations and
chaotic patterns of the giant component (see Fig. 3). “Blinking” refers to
the intermittent switching on and off of two or more sets of nodes
which leads to periodic oscillations of the order parameter. Chaos

implies that at each time a different set and number of nodes is acti-
vated. The map defined by Eq. (4) allows us to generate the cobweb of
the dynamical process. Theoretical predictions display excellent
agreement with extensive simulations of the model (see Fig. 3). The
combination of negative and positive regulatory interactions present in
triadicpercolation leads to amuch richerphasediagram than theoneof
ordinary percolation in absence of triadic interactions (see Fig. 4). The
phase diagramof triadic percolation is foundbymonitoring the relative
size R of the GC as a function of the parameter p indicating the prob-
ability that a link is active when all the regulatory conditions allowing
the link to be active are satisfied. Clearly fromFig. 4, we see thatwhile in
absence of triadic interactions the transition is second-order; when
signed positive and negative regulatory interactions are taken into
account, the phase diagram of percolation becomes an orbit diagram.
In particular, Eq. (2) predicts that the order parameter undergoes a
period doubling and a route to chaos irrespective of the degree dis-
tribution of the structural network. Theoretical predictions are well

t=1

Step 1  Step 2  

t=2

t=3

t=4

Fig. 2 | Sketch of triadic percolation. Solid lines represent structural links, dashed
curves denote regulatory interactions (green stands for positive regulation, red for
negative). Blue filled circles indicate structural nodes, black diamonds indicate
triadic interactions. For simplicity, we consider the deterministic bond-percolation
model for p = p0 = 1. At each stage t of the dynamics, bond percolation is applied to
the network, and then the effect of the regulatory activity is established. The
illustration shows how the dynamics sets into a periodic pattern with the giant
component of the network “blinking” in time. The periodic pattern is highlighted in
yellow. At time t = 1, all links are active andall nodes arepartof thegiant component

(GC). Their regulatory activity causes some links to become inactive (crossed links
in the figure). As a consequence, at time t = 2, some nodes are no longer part of the
GC and become inactive (crossed nodes in the figure). However, this change leads
to changes in the activity of some links, which in turn affect the activity of thenodes
at time t = 3, 4, etc. The final configuration reached at time t = 3 is identical to one
observed at the end of stage t = 1. Due to the determinism of themodel, the pattern
repeats with period T = 2. The relative size R of the GC oscillation switches between
2/4 and 3/4. For an example of more complex dynamical behavior see Supple-
mentary Movie.
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Fig. 4 | Phase diagram of triadic percolation on Poisson and scale-free struc-
tural networks. The phase diagram of triadic percolation (b, c, e, f) is radically
different from the phase diagram of ordinary percolation (a, d) for both Poisson
(a–c) and scale-free structural networks (d–f). Ordinary percolation reveals a
second-order phase transition (theoretical prediction, a, d) while the phase dia-
gram of triadic percolation reveals that the order parameter R displays period
doubling and a route to chaos (b, c, e, f). The theoretical predictions of the phase
diagram obtained from Eq. (2) are in very good agreements with the phase diagram

obtained from extensive Monte Carlo (MC) simulations (e, f). In a–c, the structural
network is Poisson with average degree c = 30; the regulatory network is also
Poisson with averages c+ = 1.8 and c− = 2.5. In d, e, the scale-free structural network
has degree exponent γ = 2.5, minimum degreem = 4 andmaximumdegree K = 100;
the regulatory network is Poisson with c+ = 10 and c− = 2.8. The MC simulations are
obtained from networks of size N = 2 × 105 (e) and N = 104 (f). Here points represent
all R values observed in the time range 150≤ t ≤ 200.
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Fig. 3 | Timedependenceof theorderparameterof triadic percolation. In triadic
percolation, the order parameter R can have non-trivial dynamics. Here we
demonstrate with theory and simulations the non-trivial dynamics of R for para-
meters values in which the dynamics reaches a steady state (a, d), period-two
oscillations (b, e) and a chaotic dynamics (c, f). This behavior is predicted by the
theory which can be schematically represented by cobweb plots (a–c) corre-
sponding to the map Eq. (4) with the function f indicated in green and the function

gp in red. Results ofMonte Carlo simulations for R as a function of time t (d–f) are in
excellent agreement (MC) with the theory. The structural network has a power-law
degree distribution π(k) ~ k−γ, with minimum degree m = 4, maximum degree
K = 100, and degree exponent γ = 2.5. The degrees κ̂ + and κ̂� of the regulatory
network obey Poisson distributions with average c+ and c−. The links are activated
with probability p =0.8. The parameters c+, c− are c+ = 10, c− = 1.8 (a,d), c+ = 10, c− = 2.1
(b, e). The MC simulations are performed an networks of N = 104 nodes.
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matched by results of numerical simulations (see Fig. 4). Our theory
allows to well approximate the dynamical behavior of triadic percola-
tion for random Poisson and scale-free structural networks (see Sup-
plementary Information (SI) and Supplementary Figs. 6–11 for a
discussion about the effect of the structural degree distribution on the
phase diagram of triadic percolation).

Results of numerical simulations denote a rich dynamical beha-
vior of the model also if structural networks are taken from the real-
world. In particular, we consider real-world structural networks con-
structed from empirical data collected in the repository of ref. 67, and
we combine these real structural networks with synthetic regulatory
networks capturing the triadic interactions. In Fig. 5, we show that also
for these topologies the phase diagram reveals non-trivial dynamics
with some regimes of (noisy) oscillations and some regimes of chaotic

dynamics of the order parameter (for more information about these
datasets see Supplementary Table 1 and Supplementary Fig. 12).

In absence of negative triadic interactions, when all regulatory
interactions are positive, the dynamics always reaches a stationary
point independent of time. In Fig. 6a we show a typical time-series for
R(t) where it is apparent that R reaches a stationary limit R(t) =R⋆, where
R⋆ is independent of time. Moreover in Fig. 6b we also display the
dependence of this stationary state with p, i.e., R =R⋆(p). The agree-
ment between theoretical predictions and results of numerical simu-
lations is excellent. Interestingly, the order parameter R displays a
discontinuous hybrid phase transition as a function of p showing that
positive triadic interactions induce discontinuous hybrid percolation
in higher-order networks (see Fig. 6 and the SI for the analytical deri-
vation of this result).

In order to exclude that the observed chaotic behavior of triadic
percolation is an artefact of the particular choice of the dynamics, we
consider also a version of the model with time-delayed regulatory
interactions, where each regulatory link is assigned a time delay τ and
Step 2 of triadic percolation is replaced by:

• Step 2′. Given the set of all active nodes obtained in Step 1, each
structural link is deactivated:
(a) if none of its positive regulators is active at time at t − τ;
(b) if at least one of its negative regulators is active at time t − τ;
(c) if the structural link is not deactivated according the con-

ditions (a) and (b), it can still be deactivated by stochastic
events which occur with probability q = 1 − p.

We consider two models of triadic percolation with time delay
which depend on the choice of the probability distribution for time
delays of regulatory links (see the illustration of the models in Fig. 7):

• [Model 1] each structural link is regulated by regulatory links
associated to the same time delay τ, with the time delay τ being
drawn from the distribution ~pðτÞ;

• [Model 2] each regulatory link is associated to a time delay
drawn independently from the distribution ~pðτÞ.

Note that both models reduce to triadic percolation without
delays when ~pðτÞ= δτ,1 where δx,y indicates the Kronecker delta. Inter-
estingly bothmodels lead to a route to chaos also in presence of a non-
trivial distribution of time delays, although the universality classmight
be different from the one of the logistic map (see Fig. 7). This finding
demonstrates that the route to chaos observed in triadic percolation is
a robust feature of the triadic-percolation model. Finally we note that
triadic percolation might be suitably generalized also to node perco-
lation leading also in this case to a route to chaos for the order para-
meter R (see SI and Supplementary Fig. 13 for details about this
generalization of triadic percolation).

Discussion
A combination of positive and negative interactions is known to affect
statistical mechanics problems in non-trivial ways68,69. For instance the
introduction of signed interactions in the Ising model change drama-
tically the phase diagram of the model and gives rise to spin glasses
with a complex free-energy landscape which display a very different
structure of equilibrium configurations with respect to the Ising
model. Here we combine the theory of percolation with the theory of
dynamical systems and we show that positive and negative regulatory
triadic interactions can turn percolation into a fully fledged dynamical
processwhere the order parameter undergoes a period doubling and a
route to chaos. This implies that, although the underlying structural
network remains the same, links and nodes can be activated and
deactivated in time leading to a very non-trivial dynamics of the giant
component of the network which can “blink” among few possible
connectivity configurations or change in time in a chaotic way. This
implies that triadic percolation is radically different from standard
percolation in which the activity of the links is not dynamically
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Fig. 5 | Phase diagram of triadic percolation for real-world structural network
topologies. The phase diagram of triadic interaction displaying the fraction of nodes
R in the GC as a function of p is shown for real-world structural networks obtained
from the repository67: the mouse brain network (a, b) the Human bio grid network
(c, d). The phase diagrams are obtained by MC simulations with Poisson regulatory
networks with parameters c+ = 20, c−=2 (a), c+ = 20, c−=4 (b); c+ = 20, c−=4 (c). c+ = 20,
c−=6 (d). All orbit diagrams are obtained with an initial condition pð0Þ

L =0:1.
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Fig. 6 | Triadic percolation in absence of negative triadic interactions. In
absence of negative triadic interactions the order parameter R of triadic percola-
tions always reaches a stationary state for sufficiently long times (a). Moreover the
phase diagram, indicating the stationary solution of R as a function of p displays a
discontinuous hybrid transition (b). In b, the results obtained fromMC simulations
(symbols) over networks ofN = 104 nodes are compared to theoretical expectations
(solid curves). In both plots the Poisson structural network has average degree
c = 4, the Poisson regulatory network including exclusively positive regulations has
average degree c+. In a, the results re shown for p =0.4 and c+ = 4. In Supplementary
Table 1 and in Supplementary Fig. 11 we provide more information about these
datasets.
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regulated and for each value of p characterizing the probability that
links are active, the order parameter takes only a single value. This
significant effect of triadic interaction on percolation is captured by
the striking difference between the phase diagram of triadic percola-
tion and the phase diagram of standard percolation. While standard
percolation leads to a second-order phase transition, the phase dia-
gramof triadic percolation, as long as negative regulatory interactions
are included, becomes an orbit diagram. In absence of negative reg-
ulatory interactions, triadic percolation has an order parameter that
always reaches a steady state and the phase diagram displays a dis-
continuous hybrid phase transition. Our conclusions are based on a
general theory giving very accurate predictions although being of a
mean-field nature and on extensive simulations performed on syn-
thetic as well as real-world network topologies.

Themodel can bemodified in different ways to address the needs
for specific real systems. For instance the approach can be applied to
other generalized network structures such as hypergraphs and multi-
plex networks. Moreover the regulatory rules adopted can be mod-
ified. Finally, the approach can be extended to situations in which the
nodes sustain a more complex dynamics.

These results radically change our understanding of percolation
and can be used to shed light on real systems in which the functional
connectivity of the network is strongly dependent on time as in neu-
ronal and brain networks and in climate. A particularly promising
future direction is to apply this theoretical framework to modeling
extreme rainfall events. This could lead to a substantial improvement
of their forecasting.

Data availability
All the datasets used in this study are available on the public reposi-
tory ref. 67.

Code availability
The codes used in this study are available at the GitHub repository
Triadic percolation, https://zenodo.org/record/7651480; https://doi.
org/10.5281/zenodo.7651480.
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