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Abstract

Inspired by the Games held in ancient Greece, modern Olympics represent the world’s largest pageant of athletic skill and
competitive spirit. Performances of athletes at the Olympic Games mirror, since 1896, human potentialities in sports, and
thus provide an optimal source of information for studying the evolution of sport achievements and predicting the limits
that athletes can reach. Unfortunately, the models introduced so far for the description of athlete performances at the
Olympics are either sophisticated or unrealistic, and more importantly, do not provide a unified theory for sport
performances. Here, we address this issue by showing that relative performance improvements of medal winners at the
Olympics are normally distributed, implying that the evolution of performance values can be described in good
approximation as an exponential approach to an a priori unknown limiting performance value. This law holds for all
specialties in athletics–including running, jumping, and throwing–and swimming. We present a self-consistent method,
based on normality hypothesis testing, able to predict limiting performance values in all specialties. We further quantify the
most likely years in which athletes will breach challenging performance walls in running, jumping, throwing, and swimming
events, as well as the probability that new world records will be established at the next edition of the Olympic Games.
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Introduction

Modern Olympics are inspired by the ancient version of the

Games, but based on a wider idea of globality. While ancient

Games were opened only to Greek speaking athletes [1], modern

Olympics were, since their beginning, considered a world event

involving people from every part of the globe [2]. The same

symbol of the Olympics, composed of five interlocking rings

standing for the five continents, was designed by the Baron Pierre de

Coubertin, the founder of the modern Olympic Games, with the aim

of reinforcing the idea that the Games are an international event

and welcome all countries of the world [3]. Since Athens 1896, 26

editions of the event has been organized in different locations

around the world, and, from the 241 participants representing 14

nations of the first edition, the Games have grown to about 10,500

competitors from 204 countries at the latest edition of the summer

Games of Beijing 2008. The Olympics are one the most important

events worldwide not only for sports, but also for politics and

society. Many important facts of the last century history, such as

the Nazism [4], the Israeli-Palestinian conflict [5], and the cold

war [6], have influenced the regular organization of the Games.

Also, the Olympics generally play a fundamental and positive role

for the economic and urban development of the city that hosts the

event [7,8].

Performance data of athletes at the Olympics are available for

each modern edition of the Games organized so far, and represent

an optimal proxy for the study of human limits in sport

performances for three main reasons: (i) Data cover more than a

century of sport performances since the first edition of the

Olympics dates back to 1896; (ii) Olympic data provide a detailed

record of sports performances at regular 4-year intervals; (iii) The

performances of Olympic medalists truly reflect the best achieve-

ments that could be obtained in a given historic moment because,

in the vast majority of sport disciplines, the Games have always

represented the most important event during the career of an

athlete, and consequently all the greatest athletes have always

taken part in the Olympics.

Latest years have witnessed the appearance of a large number of

statistical studies of data coming from professional sports.

Examples include basketball [9,10], baseball [11–15], soccer

[16], tennis [17], etc. Also Olympic performance data have been

the subject of many analyses [18–28]. Some of them focused on

models aimed at the description of performance progression along

time, including linear models [24] that can even lead to unrealistic

results [29,30], S-shaped curves [25] and logistic functions [27].

Others studied statistical properties of performance patterns, such

as the power-law relation between time (or speed) and length of

running events [19,21,22]. In addition, performance data of

athletes at the Olympics have been used to tune the parameters of

complicated models aimed at the determination of physiological

limits in sport performances [31–33]. For example, according to a

mathematical model for human running performance that

accounts for various energetic factors, such as capacity of

anaerobic metabolism, maximal aerobic power and reduction in

peak aerobic power, Perronet and Thibault predicted the limiting

times that athletes can reach in various running events in athletics

[32].
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In spite of the numerous efforts however, we still miss a general

description for the performances of athletes. We still miss a

universal way to predict limiting performance values and calculate

the probability of future achievements in sport. In this paper, we

address all these issues by generating a simple and coherent picture

for the description of the performances obtained by Olympic

medal winners in all specialties of athletics and swimming. We

analyze historic performance data and provide empirical evidence

about the discovery of a novel statistical law governing perfor-

mances of medal winners at the Olympic Games. With a self-

consistent approach we simultaneously (i) show that performance

improvements obey a universal law, (ii) estimate limiting perfor-

mance values, (iii) predict future achievements at the Olympics.

Results

While former statistical studies have mainly analyzed the

progression of absolute performance values along the various

editions of the Games, here we change point of view and focus our

attention on relative improvements in performances between two

consecutive editions of the Olympics. Let us indicate with py the

value of the performance obtained by the gold medalist in a

specific specialty at the edition of year y of the Olympic Games.

Depending on the specialty, py may indicate time (running and

swimming), length (long and triple jumps), height (high jump and

pole vault), or distance (discus and hammer throws, shot put). We

define the relative improvement of the gold-medal performance in

the Games of year y with respect to the gold-medal performance in

the previous edition of the Olympics as

jy : ~ Dpy{4{Dpy

� �
=Dpy{4, ð1Þ

where Dpy~py{p? represents the gap between the performance

value of the gold medalist in year y and the asymptotic

performance value p?. The asymptotic or limiting performance

value p? is a unknown parameter representing the physiological

limit that can be achieved in the specialty by an athlete. Eq. 1

defines the relative improvement towards the asymptotic perfor-

mance value of the gold medalist in year y with respect to the

performance of the gold medalist in year y{4. Note that the same

definition can be used for the measurement of the relative

improvements of silver and bronze medalists, and in principle for

athletes who have reached any arbitrary rank position.

For reasonable values of p?, we find that the distribution of the

relative performance improvements is statistically consistent with a

normal distribution. We determine the best estimate of the

asymptotic performance value p̂p? as the value of p? for which the

statistical significance (p-value) of the normal fit is maximized (see

Materials and Methods section). The procedure is generally

accurate and allows us to identify reasonable values of p̂p? in all

specialties considered in this study. In Fig. 1 for example, we

report the results obtained by analyzing performance data of male

athletes in 400 meters sprint. The best estimate of the asymptotic

time is p̂p?~41:62 seconds. For this value of p?, we find that

relative improvements obey a normal distribution with average

value m̂m~0:06 and standard deviation ŝs~0:19. Statistical

significance, however, can be used not only for the determination

of the best estimate of the asymptotic performance value, but also,

in a broader sense, to define confidence intervals for p̂p?. In the

case of 400 meters sprint of male athletes for example, we find

that, at 5% significance level, p̂p? is in the range 31.03 to 43.09

seconds. At 50% significance level, the interval is restricted and p̂p?
is in the range 38.91 to 42.74 seconds, while, at 95% significance

level, p̂p? is expected to be between 41.04 and 42.13 seconds. The

results shown in Fig. 1 are obtained by analyzing the relative

performance improvements of gold-medal winners. Similar results

are, however, obtained when considering the performances of

silver and bronze medal medalists (Fig. S1). Interestingly, the

finiteness of the data does not affect the reliability of the best

estimate of the limiting performance value since compatible values

of p̂p? can be detected by removing results of the latest editions of

the Games from the analysis (Fig. S2).

The normality of the relative improvements towards the

asymptotic performance value is a simple and strong result. At

each new edition of the Games, gold-medal performances get, on

average, closer to the limiting performance value. The average

positive improvement observed in historic performance data can

be motivated by several factors: as time goes on, athletes are

becoming more professionals, better trained, and during the

season have more events to participate in; the pool for the selection

of athletes grows with time, and, consequently there is a higher

level of competition; the evolution of technical materials favors

better performances. On the other hand, there is also a non null

probability that winning performances become worse than those

obtained in the previous edition of the Games (i.e., relative

improvement values are negative). All these possibilities are

described by a Gaussian distribution that accounts for various,

in principle hardly quantifiable, factors that may influence athlete

performances: meteorological and geographical conditions, ath-

letic skills and physical condition of the participants, etc. The

accuracy of the normal fit is not only testified by its high statistical

significance, but also by graphical comparisons between the

sample distribution and the theoretical normal distribution (see

Figs. 1b and c). It is also important to note that the values of the

relative improvements do not depend on the particular edition of

the Games, and thus their distribution is stationary (Fig. 1d). The

strength of our results, however, is not only in the significance of

the fits, but especially in its generality. We repeated the same type

of analysis for a total of 55 different specialties, and found that

performance improvements are governed by a universal law. First

of all, the law holds for all running events in athletics. This is valid

for an heterogeneous set of running distances ranging from 100 to

42,195 meters (marathon, Fig. 2 and Supporting Information S1).

Second, our analysis suggests that relative improvements are

normally distributed not only when considering time performanc-

es, but also performances regarding length or height (jumps) and

distance (throws). In Fig.2b for example, we report the outcome of

our method when applied to performance data of female gold

medalists in long jump. Other examples can be found in

Supporting Information S2. Finally, the law is valid for

performance improvements of athletes in swimming specialties

(Supporting Information S3).

Given the attention received in the recent past [24,29,30], we

reserve a special consideration to the comparison in performances

between female and male athletes in 100 meters sprint. In Fig. 2c

and 2d, we report the results obtained through the analysis of

Olympic performances in this specialty. According to our analysis,

the best estimate of the limiting time for males is p̂p?~8:28
seconds, while for females we identify the best estimate for the

asymptotic time at p̂p?~9:72 seconds. Our statistical analysis

predicts that women will be always slower than men and that the

gap will saturate at about 14%, consistent with the estimation by

Sparling et al [20] but in disagreement with what predicted by the

unrealistic model of Atkinson et al [24]. It should be noted that for

women the statistical significance is less predictive than the one

measured for men. While for men we observe that statistical

significance is clearly peaked around p̂p? and goes rapidly to zero

as p? decreases, the same does not happen in the case of women.

Universality of Performances at the Olympics
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We believe that the statistics are less accurate because the analysis

is based on 19 editions instead of 26 since women started to run

the 100 meters sprint only in Amsterdam 1928, while men already

in Athens 1896. In particular, the lack of sufficient data provides

high statistical significance also for the unrealistic p?~0 seconds.

We expect, however, that the future addition of more data point

will suppress this effect. Despite these problems, our analysis still

produces meaningful estimates of the upper bound of the

asymptotic time: at 5% significance level, the asymptotic value is

expected to be lower than 10.31 seconds, while at 50%

significance level, p̂p? should be lower than 10.17 seconds. Also,

our best estimates of the limiting performance values are probably

not as accurate for this specialty (or other short distances) because

there is not enough reliable performance data regarding the first

editions of the Games (automatic time was introduced in Mexico

City 1968). The removal of data points for male 100 meters sprint

before Amsterdam 1928 (and in general of a few data points from

the entire time serie) leads also to the impossibility to determine

the best estimate of the asymptotic time as a global maximum of

statistical significance (see Fig. S3). For 100 meters sprint, we have

performed therefore an additional analysis in which we aggregated

together the results of gold, silver and bronze medalists and

obtained slightly different estimates for the limiting performance

values [p̂p?~8:80 seconds for men (Fig. S4) and p̂p?~9:64 seconds

for women (Fig. S5, S6)].

In general, our approach produces good results for specialties

with a sufficiently long tradition in the Games. This is basically

the case of all male specialties in athletics. Data about female

performances typically provide less accurate results, but still, in

the majority of the cases, the predictions of the asymptotic

performance values are reasonable. We summarize in Table 1

the results obtained for some specialties, while we refer to the

Supporting Information for a systematic analysis of all of them. It

should be noted that there are also a few cases in which things

do not work perfectly. In women 800 meters, for example,

statistical significance does not exhibit any peak value (Support-

ing Information S1). There are also a few specialties in which the

best estimate of the limiting performance value does not

correspond to the global maximum of statistical significance

(Supporting Information S1). In these cases, statistical signifi-

Figure 1. Performances of male gold medalists in 400 meters sprint. a. Best estimate of the asymptotic performance value. For each value of
p? lower than the actual Olympic record, we evaluate the goodness of the fit of performance improvements with a normal distribution. p̂p? is
determined as the value of the asymptotic time p? that maximizes the statistical significance (p-value). For men 400 meters sprint, our best estimate
is p̂p?~41:62 seconds, where we find that relative performance improvements are normally distributed with a confidence of 98%. For this value of
p?, the best empirical estimates of the average value and standard deviation are respectively m̂m~0:06 and ŝs~0:19. b. The cumulative distribution
function of the z-scores obtained for p?~p̂p? (red curve) is compared with the standard normal cumulative distribution (black curve). c. Normal
sample quantile are plotted against normal theoretical quantiles [51]. The dashed line corresponds to the theoretically expected behavior in case of a
perfect agreement between sample and theoretical distributions. d. z-scores of relative performance improvements between consecutive editions of
the Games.
doi:10.1371/journal.pone.0040335.g001

Universality of Performances at the Olympics
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cance is a non monotonic function of the p? and more maxima

are present. Still the peak value that appears more plausible can

be used as an estimate of p̂p?. Finally, there are three specialties

in athletics in which a clear peak in statistical significance is

visible only by excluding performance data of Sidney 2000, but

this exclusion is fully justified by the fact that the top athletes of

the moment did not take part in the competition (Supporting

Information S1). For example, about the men 200 meters sprint

of Sidney 2000, the web site sports-reference.com reports: ‘‘This

race was expected to be between the Americans Maurice Greene

and Michael Johnson. Greene was the best in the world at 100

meters and Johnson at 400 meters, and their race in the middle

distance was highly anticipated. But neither qualified for the

team at the Olympic Trials, succumbing to minor injuries,

although they both made the team in their better events.’’

The good accuracy of our best estimates of the limiting

performance values is supported also by the power-law relation

between these quantities and the length of the running events in

athletics (see Fig. 3a). As already observed by Katz and Katz,

world record times (pwr) and running distances (‘) are related by

the power-law relation pwr*‘a [21]. Katz and Katz studied the

relation between world record performances and running

distances in various epochs, and found that the power-law

exponent value a is always slightly larger than 1.1 but decreases

for more recent epochs. For example, they measured a^1:14 in

1925, and a^1:12 in 1995. On the basis of our measurements, we

claim that the asymptotic value of the exponent will be exactly

a?~1:1, when limiting performance values, and thus definitive

world records, will be reached in all specialties of athletics.

A final application of our findings is the prediction of future

performances at the Olympics. The performance value of the gold

medalist in London 2012, for example, can be estimated as

p2012~ p2008{p̂p?ð Þ 1{jð Þzp̂p?, where j is a random variate

extracted from the normal distribution N j; m̂m,ŝsð Þ with mean value

m̂m and standard deviation ŝs. Similar equations can be written also

to predict performance values of the other editions after London

2012. For each future edition of the Games, we can draw a

distribution of performance values (see Fig. 3b). The distribution is

normal for the edition of 2012, but diverges from normality as

time grows. In particular, while the expected performance value

decreases exponentially towards the asymptotic performance value

as time increases, the standard deviation initially grows as we move

further in future until predictions become again more accurate

because of the boundary effect of p̂p? (see Fig. 3c).

By simply looking at the performances expected at the next

edition of the Games in London 2012, we can ask what is the

Figure 2. Statistical properties of performance improvements in athletics. In the main panels we show the determination of the best
estimate p̂p? of the asymptotic performance value, while in the insets we provide a graphical comparison between the sample cumulative
distributions (red line) and the standard normal cumulative distribution (black line). a and b. We report the results obtained by the analysis of the
performances of male athletes in marathon (p̂p?~5,771:44 seconds, p-value ~0:58) and female athletes in long jump (p̂p?~8:12 meters, p-value
~0:34). c and d. We show the outcome of our method for performances of men and women in 100 meters sprint (respectively, p̂p?~8:28 seconds
and p-value ~0:64, p̂p?~9:72 seconds and p-value ~0:97).
doi:10.1371/journal.pone.0040335.g002
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probability that the winner of the gold-medal will beat the actual

world record of her/his specialty. In Table 1, we list these

probabilities for some specialties together with the most likely

performance values that gold-medal winners will obtain. In

athletics, there are not negligible chances (about 30%) that the

actual world records of 100 meters, 110 meters hurdles and

marathon will be lowered by men. In swimming specialties, the

expectations are more promising: there is a good probability

(higher than 70%) that the world record of 1,500 meters freestyle

will be beaten by male athletes.

Relevant limits are unlikely to be broken at the next Olympics

(Fig. 3d). We will have to wait until 2020 in order to have a 50%

chance that a man will run the 100 meters in less than 9.50

seconds. For other specialties, expectations (probability higher

than 50%) are even less promising: men will run the 400 meters in

less than 43.00 seconds and the marathon in less than two hours

(7,200 seconds) only after 2030, women will run the 100 meters

sprint in less than 10.40 seconds only after 2040, and finally the

wall of 26 minutes (1,560 seconds) in 10,000 meters will likely be

breached by male athletes only after year 2080.

Discussion

In conclusion, our paper shows that the performance of

Olympic medal winners in athletics and swimming obey,

independently of the type of specialty, a simple universal law. If

performance improvements are calculated with respect to an

asymptotic performance value, then the relative difference

between improvements obtained in two different editions of the

Games is a random variate following a normal distribution. This is

the common property of a broad class of natural phenomena that

be described by the theory of biased random walks [34], such as

the locomotory movements of organisms responding to an external

stimulus [35–37], the activity of spiking neurons [38], the trends of

daily temperatures [39], stock prices [40], capital markets [41],

etc.

The normality of the relative improvements cannot be

explained in trivial terms, especially in this case where the statistics

is performed on extremal properties of the system. Remember in

fact that the performance values analyzed here are those obtained

by the best athletes of a given edition of the Olympics (i.e.,

potentially the best performers on the earth), and thus it is natural

to expect that absolute performance values obey statistical laws of

extremes [42]. More importantly, since the distribution is normal,

it makes sense to refer to average trajectories of top performance

values along editions of the Games. Our findings in fact allow to

say that, on average, the absolute performance value of top

athletes at the Olympics gets closer to the limiting performance

value in an exponential fashion, with a rate of about 5% in

athletics and 10% in swimming. More in detail, the average

trajectory of the performance value can be described by the

equation

SpyT~py0
e{m̂m y{y0ð Þzp̂p?, ð2Þ

where y0 is an arbitrary initial edition year of the Olympics and

py0
is the performance value measured in year y0. Eq.2 can be

Table 1. Predictions of gold-medal performances in athletics and swimming.

sport gender specialty p̂p? m̂m ŝs p-value E P p̂p2012

Track & Field Men 100 m 8.28 0.04 0.10 0.64 26 0.35 9.63+0.13

110 m hurdles 11.76 0.05 0.12 0.48 26 0.50 12.87+0.14

400 m 41.62 0.06 0.19 0.98 26 0.14 43.62+0.41

10,000 m 1,539 0.05 0.19 0.45 22 0.01 1,617+15

marathon 5,771 0.03 0.15 0.58 26 0.34 7,537+273

pole vault 6.87 0.05 0.08 0.91 26 0.03 6.00+0.07

hammer throw 103.81 0.04 0.09 0.47 25 0.03 82.89+1.96

Women 100 m 9.72 0.05 0.19 0.97 19 0.12 10.73+0.20

400 m 45.14 0.02 0.15 0.77 12 0.00 49.53+0.67

long jump 8.12 0.04 0.18 0.34 16 0.01 7.08+0.19

Swimming Men 100 m fs 44.84 0.09 0.10 0.92 23 0.36 47.00+0.24

100 m bs 48.98 0.09 0.11 0.93 22 0.24 52.22+0.39

100 m brs 57.38 0.16 0.16 0.93 11 0.36 58.67+0.24

1,500 m fs 577 0.05 0.05 0.50 23 0.71 866+15

Women 100 m fs 51.87 0.12 0.19 0.54 22 0.00 52.97+0.24

100 m bs 54.73 0.08 0.14 0.59 20 0.20 58.62+0.59

100 m brs 62.08 0.13 0.10 0.86 11 0.15 64.77+0.31

800 m fs 388 0.05 0.07 0.84 11 0.76 489+7

We summarize here some of the results obtained with our analysis. We list several specialties in athletics and swimming performed by male and female athletes. For
each specialty, we report from left to right: the name of the specialty, the best estimates of the asymptotic performance value p̂p? , the best estimate of the mean value
m̂m, the best estimate of the standard deviation ŝs, the statistical significance or p-value of the test of normality, the number E of Olympic Games that included the
specialty, the probability P that the actual world record will be beaten in London 2012, and the most likely performance value p̂p2012 that gold-medal winners will obtain
at the next edition of the Olympic Games. For shortness of notation, in swimming specialties we abbreviate ‘‘freestyle’’ with ‘‘fs’’, ‘‘backstroke’’ with ‘‘bs’’, and
‘‘breaststroke’’ with ‘‘brs’’. The values of p̂p? and p̂p2012 are reported in seconds for running and swimming races, and in meters for jumping and throwing events.
doi:10.1371/journal.pone.0040335.t001
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derived directly from Eq.1 and the fact that relative improvements

are normally distributed but only under the assumptions that the

edition year of the Olympics is considered as a continuous variable

and that S
dDpy=dy

Dpy

T~
dSDpyT=dy

SDpyT
. Note that this observation is

important for stressing the difference between our fitting

procedure and a more straightforward analysis based on the

exponential fit of absolute performance values, as the one used to

find that the progression of world record performances follows a

piecewise exponential decaying pattern [43–45]. Note also that the

analysis of the only Olympic performances differs from the one of

world record performances for the following reasons: (i) The

relative change between two world records, if defined in a similar

manner as Eq.1, can be only a positive quantity; (ii) The time

difference between two world record performances is not a

constant, but a random variate by itself. Because the number of

events in which new world records can be established is higher

today than it was one century ago (and they had been growing in

the course of the years), in any analysis of the progression of world

record performances time should be rescaled to account for that

[43].

The asymptotic performance value p? is an a priori unknown

variable whose value can be self-consistently determined by

maximizing the statistical significance of the normality fit. It is

particularly important to stress that our simple methodology

provides good estimates of performance limits that are in general

consistent with those obtained through complicated physiological

models [31–33]. For example, Perronet and Thibault predicted

that the limiting time for men in marathon is 1 hour, 48 minutes

and 26 seconds [32]. With our minimalistic model, we are able to

predict that this limiting time is between 1 hour, 36 minutes and

11 seconds and 1 hour, 41 minutes and 40 seconds (for men

marathon the peak of statistical significance is wide, see Fig. 2a). At

the same time, it is also important to stress that our minimalistic

analysis can also lead to little inconsistencies. For example, the best

estimates of p? obtained here state that, asymptotically, the

average pace in marathon would be higher than the one in 10,000

meters. This means that according to our estimates, the first

10,000 meters in marathon would be run in less than 23 minutes,

while the entire race of 10,000 meters would be run asymptotically

in more than 25 minutes. This inconsistency can be partially

explained by the fact that the statistics for 10,000 meters is less

Figure 3. Scaling law between asymptotic time and running length, and prediction of performances at future editions of the
Olympic Games. a. Relation between the best estimates of the limiting performance value p̂p? and the length ‘ of the race for men running events
in athletics (red circles). We excluded from the analysis relay and hurdles events. We find that p̂p?*‘a? , and the best estimate of the power-law
exponent is âa?~1:10+0:02 (black line). b. Probability density functions of the winning time for the men 400 meters sprint in future editions of the
Games. The dashed line represents the winning time in the latest edition of the Olympics in Beijing 2008. This value is used as initial condition for the
prediction of future performances. c. The probability density of the winning time in men 400 meters predicted by our model is compared to past
performance data (black circles). The density plot is obtained by convoluting the various prediction curves derived from real data. d. Probability that
athletes will breach challenging walls in various specialties of athletics as a function of time.
doi:10.1371/journal.pone.0040335.g003
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reliable because based only on 22 events, while the one for

marathon on the results of 26 editions of the Games. In general, it

is very important to remark that, at the moment, we are able to

provide only good estimates of the asymptotic performance values

because such estimates are based on a relatively small set of

empirical data (at best 26 editions of the Olympics), and therefore

must be taken with a grain of salt. We expect in fact that, while the

normal law governing performance improvements will likely

continue to hold, the accuracy in the estimation of the asymptotic

performance values will improve with the addition of more data

points in the future, starting already from the next edition of the

Games in London 2012.

Materials and Methods

Data Set
Medal lists and results of all editions of the Olympic Games

have been collected from the web sites www.sports-reference.com

and www.databaseolympics.com. Whenever possible, we consid-

ered automatic measures of time instead of manual ones. We

included in our study all results obtained in the editions of the

modern Olympic Games since Athens 1896, but we excluded from

the analysis data about the so-called ‘‘Intercalated’’ edition of the

Games held in Athens in 1906. We focused on sports classified as

‘‘Track & Field’’ and ‘‘Swimming’’, and particularly on specialties

of these sports that have been performed at least in the latest ten

editions of the Olympic Games. We compared only performances

between subsequent editions of the games held at four years of

difference. We excluded therefore comparisons between either the

consecutive editions of Stockholm 1912 and Antwerp 1920

(separated by World War I), and those of Berlin 1936 and

London 1948 (separated by World War II).

For consistency, we considered only specialties whose rules or

techniques have not changed during time. For example, we

excluded javelin throw because of the javelin redesign in 1986. We

also excluded performances in high jump before Mexico City 1968

when athletes started for the first time to adopt the modern jump

style called ‘‘Fosbury flop’’.

Data are made available for download at filrad.homelinux.org/

resources.

Normality Test
The results reported in the paper are based on the normality test

introduced by Anderson and Darling [46]. Given a value of p?,

we compute the best estimates of the mean m̂m and the standard

deviation ŝs as m̂m~1=R
P

y jy and ŝs~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= R{1ð Þ

P
y jy{m̂m
� �2

q
,

respectively. The relative improvement jy is defined in Eq.1. R

indicates the number of results between consecutive editions of the

Olympic Games that are included in the analysis. We then

compute the z-scores as zy~ jy{m̂m
� �

=ŝs and rearrange them in

ascending order such that z1ƒz2ƒ . . . ƒzR. The Anderson-

Darling distance is computed with the formula

A2~{R{1=R
PR

i~1 2i{1ð Þ logW zið Þz 2(R{i)z1ð Þ log 1{ð½
W zið ÞÞ�, where W zið Þ is the standard normal cumulative distribu-

tion function. We further use the modified statistics

A�2~A2 1z4=R{25=R2
� �

, suitable in the case in which both

the mean and standard deviation are estimated from the data as

suggested by Stephens [47].

We evaluate the goodness of the fit by generating 105 random

number sequences of length R extracted from the standard normal

distribution. The statistical significance of the normality test (p-

value) is calculated as the number of artificial sequences whose A�2

is larger than the one measured for real data divided by the total

number of generated sequences. Note that there is a trivial

monotonic relation between the p-value and the Anderson-Darling

distance A�2, and therefore the maximum of the p-value

corresponds to the minimum of A�2.

We used the normality test by Anderson and Darling because

this test is considered one of the best empirical distribution

function statistics for detecting most departures from normality,

and can be used for testing the normality of very small sample sizes

[47]. We verified, however, the robustness of our results by using

other standard normality tests, including those based on the

criteria of Kolmogorov-Smirnov, Cramér-von Mises and Shapiro-

Wilk [48,49]. We also verified the consistency of our results with

normality tests based on the moments of the distributions (see Fig.

S6).

Furthermore, we tested the accuracy of our fitting method by

implementing a bootstrap procedure [50], and found that our

fitting method is able to well recover the correct parameter values

in artificial sequences generated according to our model (see Fig.

S7).
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