Heterogeneous message passing for heterogeneous networks

George T. Cantwell $\odot,{ }^{1,2}$ Alec Kirkley, ${ }^{3,4,5}$ and Filippo Radicchi \odot^{6}
${ }^{1}$ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
${ }^{2}$ Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
${ }^{3}$ Institute of Data Science, University of Hong Kong, Hong Kong
${ }^{4}$ Department of Urban Planning and Design, University of Hong Kong, Hong Kong
${ }^{5}$ Urban Systems Institute, University of Hong Kong, Hong Kong
${ }^{6}$ Center for Complex Networks and Systems Research, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA

(Received 3 May 2023; accepted 1 September 2023; published 26 September 2023)

Abstract

Message passing (MP) is a computational technique used to find approximate solutions to a variety of problems defined on networks. MP approximations are generally accurate in locally treelike networks but require corrections to maintain their accuracy level in networks rich with short cycles. However, MP may already be computationally challenging on very large networks and additional costs incurred by correcting for cycles could be prohibitive. We show how the issue can be addressed. By allowing each node in the network to have its own level of approximation, one can focus on improving the accuracy of MP approaches in a targeted manner. We perform a systematic analysis of 109 real-world networks and show that our node-based MP approximation is able to increase both the accuracy and speed of traditional MP approaches. We find that, compared to conventional MP, a heterogeneous approach based on a simple heuristic is more accurate in 81% of tested networks, faster in 64% of cases, and both more accurate and faster in 49% of cases.

DOI: 10.1103/PhysRevE.108.034310

I. INTRODUCTION

Message passing (MP), sometimes called belief propagation or the cavity method, is a computational technique aimed at solving problems or characterizing processes on networks [1]. Examples include spreading processes [2-7], community detection [8,9], sampling strategies [10], spectral properties [11,12], and percolation [13-17].

MP techniques are closely related to mean-field approximations [18,19], in which one relates a quantity of interest at each node to those of their neighbors. For example, the event in which someone catches an infectious disease is related to whether the people they are in contact with catch the disease. A mean-field analysis proceeds by replacing unknown quantities defined on the nodes of the network with average or expected values, (incorrectly) assuming that these quantities are independent. One derives a set of self-consistent equations to be solved. In such meanfield approximations there is one equation for each node in the network. Unfortunately, these approximations can be inaccurate.

MP approaches follow a similar logic but at least partially account for correlations induced by edges. In place of the independence assumption of a mean-field approximation, one makes a conditional independence assumption. As for mean-field approximations, MP approximations introduce a system of self-consistent equations to be solved. Now, however, there are two equations for each edge in the network.

Conventional MP techniques are often exact on trees (networks without cycles), and are justified on general networks
by a locally treelike assumption. When applied to real networks, MP methods often generate fairly accurate predictions [20]. Mistakes in the predictions can be attributed to the inability of the locally treelike assumption to account for the correlations introduced by cycles.

However, because many networks have a relatively high density of short cycles it is important to be able to account for them. Social networks, for instance, typically have large numbers of triangles [21,22]. One mechanism that would give rise to a large number of triangles is triadic closure-the process whereby two of your friends become friends with each other. Likewise shared familial, vocational, or geographical ties can lead to densely connected subgroups of individuals, and hence large numbers of triangles.

A few attempts to account for correlations due to short loops exist in the literature. Some previous methods, such as those of Refs. [23,24], do not generalize to arbitrary combinations of short loops, or suffer from the limitation of being problem specific. One promising direction is the approach of Cantwell and Newman [25], which accounts for correlations caused by arbitrary short loops.

The framework of Ref. [25] relies on a procedure for constructing appropriately defined neighborhoods around each node. We will refer to this procedure as the neighborhood message passing (NMP) approach. The size of the neighborhoods can be increased in order to improve the accuracy of the predictions, but this increase in accuracy comes at the cost of an increasingly complex set of equations to solve. The utility of NMP follows from the fact that the method provides good results for relatively small neighborhoods. The accuracy of NMP has been demonstrated for bond
percolation, spectral properties of sparse matrices, and the Ising
model [25,26].
However, many networks have heterogeneous degree distributions [27], and this property may cause unique problems. First, heterogeneous degree distributions can imply a large density of short cycles [28]. In a random graph with n nodes and degree distribution p_{k}, the expected number of triangles per node $\langle t\rangle$ is to leading order

$$
\begin{equation*}
\langle t\rangle \propto \frac{\left\langle k^{2}\right\rangle^{3}}{2 n\langle k\rangle^{3}} \tag{1}
\end{equation*}
$$

where $\langle k\rangle=\sum_{k} k p_{k}$ and $\left\langle k^{2}\right\rangle=\sum_{k} k^{2} p_{k}$. If $\left\langle k^{2}\right\rangle$ diverges as $n^{1 / 3}$ or faster, the expected number of triangles per node diverges, even if the network is sparse.

Second, heterogeneous degree distributions may cause MP schemes to be somewhat more computationally demanding than they are in networks with homogeneous degree distributions. By definition, each node of degree k has k edges. Each of these edges has a corresponding equation that typically depends on $k-1$ other variables. Evaluating these equations for a network with n nodes may thus require $O\left(n\left\langle k^{2}\right\rangle\right)$ operations. When $\left\langle k^{2}\right\rangle$ is large (or diverging) the numerical solution of the equations could be expensive.

Heterogeneous degree distributions may thus cause both accuracy and speed degradation for traditional MP approaches. As discussed, the NMP approach trades off speed for accuracy in networks with short cycles. For networks with relatively homogeneous degree distributions, such as social or biological networks [22], the cost may be quite acceptable. However, NMP may considerably exacerbate the speed issues caused by heterogeneous degree distributions, and the additional cost may simply be prohibitive. In this paper, we present a solution to this problem, allowing for accurate and fast approximations for real-world networks with heterogeneous degree distributions.

Our solution embraces heterogeneity and relies on an appropriately heterogeneous approximation. Large-degree nodes can be approximated by conventional mean-field approximations, since the aggregate fluctuations of their neighbors should be small by the law of large numbers. Conversely, low-degree nodes can be approximated either by conventional MP, or by NMP when there is a large density of short loops. By tailoring the level of approximation for each node we can deploy our method to arbitrary networks.

The remaining sections of the paper are structured as follows. In Sec. II, we systematically explore the properties of neighborhoods in real-world networks, observing considerable heterogeneity. In Secs. III and IV, we first derive and then test a heterogeneous NMP approach for computing the spectral properties of real networks. We find that our approach is able to increase on both the accuracy and the speed of MP in about 50% of cases. Finally, in Sec. V, we show that the NMP approach can be also used in estimating properties of the zero-field Ising model on networks, and then conclude the paper.

FIG. 1. Definition of the r neighborhood of a node. We denote the order r neighborhood of node i as E_{i}^{r}. Neighborhoods are naturally defined in terms of edges; the set of nodes that are in the neighborhood, i.e., N_{i}^{r}, is composed of all nodes at the end of at least one edge in E_{i}^{r}. For the focal node i, shown as a red square in the figure, the neighborhood E_{i}^{0} consists of all edges incident to the node, depicted in red (edges between the square and the circles). For E_{i}^{1}, the neighborhood consists of all edges in E_{i}^{0} along with all edges between neighbors of i, depicted in blue (edges between circles). For E_{i}^{2}, the neighborhood consists of all edges in E_{i}^{1} along with all edges on paths of length two neighbors of i, depicted in yellow (edges between circles and triangles). Nodes in the neighborhoods N_{i}^{0} and N_{i}^{1} are denoted by blue circles; N_{i}^{2} is composed of all nodes denoted as either blue circles or yellow triangles.

II. NEIGHBORHOOD HETEROGENEITY

In the NMP approach, one sets a value of r for the network. Given $r \geqslant 0$, one constructs the neighborhoods of each node, defined by a set of edges. Specifically, the r neighborhood around node i, denoted E_{i}^{r}, consists of all edges incident to node i, along with all paths of length r or shorter between nodes adjacent to i. An example of this construction is shown in Fig. 1. All nodes that appear at the end of edges in E_{i}^{r} compose the set N_{i}^{r}. Note, r neighborhoods are defined by cycles; the neighborhood N_{i}^{r} is not equivalent to the set of nodes that are at distance r from node i.

To begin, we compute the size of the neighborhoods of 109 real-world networks. Percolation properties of these networks have been investigated in Refs. [15,24,29]. The corpus contains networks of different nature, including technological, biological, social, and information networks. See Tables I-III for details. All networks in the corpus are relatively sparse. Other structural properties-e.g., size, clustering coefficient, average length, degree distribution, and degree correlationsvary greatly within the corpus.

To get a sense of how the NMP approximation will scale, we look at the dependence of the size of the largest neighborhood, i.e., $\left|N_{\max }^{r}\right|=\max _{i}\left|N_{i}^{r}\right|$, with the network size. Our results, reported in Fig. 2, indicate that the size of the largest neighborhood grows with the network size. There are a few networks for which the largest neighborhood are very small compared to the network size. This is the case of networks with homogeneous degree distributions and/or strong spatial

FIG. 2. Size of the largest neighborhoods in real-world networks. (a) We consider 109 real-world networks. For each network, we evaluate the size of the largest neighborhood $\left|N_{\max }^{r}\right|$ and plot it as a function of the size n of the network. Each point in the plot refers to a network. The lines are power-law fits of the data points, i.e., $\left|N_{\max }^{r}\right| \sim n^{\beta^{r}}$. The best fit is obtained using linear regression on the logarithms of the data. We find $\beta^{1}=0.57$ (Pearson's linear correlation coefficient 0.69) and $\beta^{2}=0.67$ (0.71). (b) Cumulative distribution function (CDF) of $\left|N_{\text {max }}^{r}\right|$. Data are the same as in (a).
embedding, as for example road networks. Networks with heterogeneous degree distributions are instead characterized by large neighborhoods. To give quantitative references, we find that for 50% of the networks, $\left|N_{\text {max }}^{2}\right| \geqslant 0.22 n$.

In summary, these results show that some networks contain large neighborhoods. If the NMP equations scale poorly with the neighborhood size then the approach will be infeasible. In the next section, we remedy this by adjusting r at the level of individual nodes.

III. HETEROGENEOUS MESSAGE PASSING

A. General approach

In the NMP approach of Ref. [25] one chooses a single value of r. Using the neighborhoods, and specific to the problem at hand, one derives a set of MP equations of the form

$$
\begin{gather*}
H_{i}=\Phi_{i}\left(\boldsymbol{H}_{i \leftarrow N_{i}^{r}}\right) \tag{2}\\
H_{i \leftarrow j}=\Phi_{i \leftarrow j}\left(\boldsymbol{H}_{i \leftarrow N_{j}^{r} \backslash N_{i}^{r}}\right), \tag{3}
\end{gather*}
$$

where $\boldsymbol{H}_{i \leftarrow N_{i}^{r}}$ is the vector of $H_{i \leftarrow j}$ for $j \in N_{i}^{r}$, and Φ_{i} and $\Phi_{i \leftarrow j}$ are problem-specific MP functions. A MP algorithm consists of initializing the variables (e.g., at random) and then iterating this set of equations until they converge to a fixed point. In general, convergence may not be mathematically guaranteed; necessary and sufficient conditions for convergence are unclear, but this does not appear to be a significant problem in practice [30,31]. When setting $r=$ 0 , these equations reduce to the conventional MP ones. Increasing r should increase the accuracy of the approach, but potentially with a considerable increase of the computational cost.

As discussed, in a heterogeneous network there may be competing considerations on how to appropriately set the value of r. For example, in a sparse network with a high density of short cycles, we are likely to require $r \geqslant 1$ for an accurate approximation. On the other hand, heterogeneous degree distributions may even increase the cost to solving the traditional MP equations. Further increasing the complexity
of the equations to be solved by increasing r may simply be untenable. How should one proceed?

Our solution is based on the simple observation that the neighborhood formalism does not actually require that each neighborhood is constructed with the same value of r. Around nodes that are dense with short cycles but have relatively low degree, we can increase r. This increases accuracy with only a small increase to computational cost. Conversely, for nodes with very high degrees, we can decrease r to reduce computational burden without a significant decrease in accuracy. In fact, for nodes with extremely high degree we should find $H_{i \leftarrow j} \approx H_{j}$, i.e., that the messages have the same numerical value as the marginals. Making this approximation corresponds to a mean-field approximation, and helps to further reduce the computational cost caused by high-degree nodes.

We allow each node i to have its own approximation value r_{i}. Rewriting the NMP equations but with heterogeneous r we get

$$
\begin{gather*}
H_{i}=\Phi_{i}\left(\boldsymbol{H}_{i \leftarrow N_{i}^{r_{i}}},\right. \tag{4}\\
H_{i \leftarrow j}= \begin{cases}H_{j} & \text { if } r_{j}=-1, \\
\Phi_{i \leftarrow j}\left(\boldsymbol{H}_{i \leftarrow N_{j}^{r_{j}} \backslash N_{i}^{r_{i}}}\right. & \text { if } r_{j} \geqslant 0 .\end{cases} \tag{5}
\end{gather*}
$$

Note we allow $r_{j}=-1$ and use this notation to indicate the standard mean-field approximation.

Below, we test the ability of heterogeneous NMP to account for the spectral properties of large networks. We find that increasing r does indeed increase the accuracy of the approach over conventional MP, at the expense of increased compute time. However, by setting $r_{i}=0$ for large-degree nodes, we retain much of the improved accuracy for only a small additional cost compared to conventional MP. Remarkably, by setting $r_{i}=-1$ for the large-degree nodes, we find it is possible to derive an algorithm that is able to improve on both accuracy and speed, compared to conventional MP.

B. Spectral density estimation

As a specific application, we consider an heterogeneous NMP approximation for the estimation of the spectral density of the graph operators, e.g., adjacency matrix, graph Laplacian. The spectral density of matrix \boldsymbol{M} with eigenvalues λ_{k} is defined

$$
\begin{equation*}
\rho(z)=-\frac{1}{n \pi} \sum_{k=1}^{n} \frac{1}{z-\lambda_{k}} \tag{6}
\end{equation*}
$$

for complex z.
Following Ref. [25], one can approximate $\rho(z)$ by first solving the MP equations

$$
\begin{align*}
H_{i}(z) & =\sum_{w \in W_{i}}|w| \prod_{j \in w} \frac{1}{z-H_{i \leftarrow j}(z)}, \tag{7}\\
H_{i \leftarrow j}(z) & =\sum_{w \in W_{j \backslash i}}|w| \prod_{k \in w} \frac{1}{z-H_{j \leftarrow k}(z)}, \tag{8}
\end{align*}
$$

where the sum is over all closed walks w in the neighborhood N_{i}^{0} or $N_{j}^{0} \backslash N_{i}^{0}$, respectively, and $|w|$ is the product of all edges in the walk. These equations can be solved relatively efficiently using matrix algebra-see Ref. [25]-and finally
one approximates

$$
\begin{equation*}
\rho(z)=-\frac{1}{n \pi} \sum_{i=1}^{n} \frac{1}{z-H_{i}(z)} . \tag{9}
\end{equation*}
$$

In the NMP heterogeneous approximation, we mostly leave the equations unchanged, except that now we allow the neighborhood $N_{i}^{r_{i}}$ of node i to be defined with its own value of r_{i}, and also allow for the mean-field approximation, i.e.,

$$
H_{i \leftarrow j}(z)= \begin{cases}H_{j}(z), & r_{j}=-1, \tag{10}\\ \sum_{w \in W_{j \backslash i}}|w| \prod_{k \in w} \frac{1}{z-H_{j \leftarrow k}(z)}, & r_{j} \geqslant 0 .\end{cases}
$$

To establish the desired value of r_{i} for each node i, we set parameters $r_{\min }, r_{\max }$, and K. The value of r_{i} is chosen to be the largest value $r_{\text {min }} \leqslant r_{i} \leqslant r_{\text {max }}$ so that $\left|N_{i}^{r_{i}}\right| \leqslant K$. This procedure imposes $r_{i}=r_{\text {min }}$ whenever the degree of node i is larger than K. Otherwise, it imposes r_{i} as large as possible so that the neighborhood contains no more than K nodes.

IV. NUMERICAL RESULTS

We estimate the spectral density of the graph Laplacian of the real networks in our corpus. The spectral properties of the Laplacian are important for many graph applications, including graph invariants (e.g., connectivity, expanding properties, genus, diameter, mean distance, and chromatic number), partition problems (e.g, graph bisection, connectivity and separation, isoperimetric numbers, maximum cut, clustering, graph partition), and optimization problems (e.g., cut width, bandwidth, min- p-sum problems, ranking, scaling, quadratic assignment problem) [32-35]. We estimate the ground-truth density, namely $\rho(z)$, using the standard numerical library LAPACK [36]. This method requires a time that scales as the cube of the network size.

NMP approximations, denoted with $\tilde{\rho}(z)$, are instead obtained numerically solving Eqs. (9) and (10). We consider different levels of approximations. We always set $r_{\text {min }}=-1$; we consider $r_{\text {max }}=0, r_{\text {max }}=1$, and $r_{\text {max }}=2$; we vary the value of the parameter K. For $K=N \geqslant\left|N_{\max }^{r}\right|$, no heterogeneous approximation is de facto implemented, and the above approach reduces to the one already considered in Ref. [25].

The densities $\rho(z)$ and $\tilde{\rho}(z)$ are computed for $z \in[0,10]$ and with a resolution $d z=0.2$. In particular, we normalize the densities within the interval $[0,10]$. In the NMP approximations, we use $\epsilon=0.1$ as the value of the broadening parameter, see Ref. [25] for details. All numerical tests are performed on a server with $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R})$ CPU E5-2690 v4 @ 2.60 GHz CPUs and 378 GB of RAM.

Not all the networks in our corpus are part of the analysis. For $K=N$, we consider only networks with a number of nodes $N \leqslant 20000$. For $K=10$, we consider all networks with size $N \leqslant 100000$. Irrespective of the level of the approximation, we let the algorithm run for up to 7 days on our machine. For the slowest NMP approximation, i.e., $r_{\max }=2$ and $K=$ N, we were able to estimate the spectral density of the graph Laplacian only for 41 networks. For faster approximations, the number of analyzed networks was higher. Details are provided in Tables I-III.

FIG. 3. Computational time for the estimation of the spectral density of the graph Laplacian. We consider a subset of the 109 real-world networks at our disposal. For each network, we measure the computational time T^{r} required by the NMP algorithm for the computation of the spectral density of the graph Laplacian. Here, we use the compact notation $r=r_{\text {max }}$. Estimates of T^{r} are given in seconds. (a) We plot T^{r} as a function of the network size n. The lines are power-law fits of the data points, i.e., $T^{r} \sim n^{\tau^{r}}$. Fits are obtained using simple linear regression between the log-transformed variables. We find $\tau^{1}=1.21$ (Pearson's linear correlation coefficient 0.64) and $\tau^{2}=1.32(0.48)$. (b) We consider the same networks as in (a), but we test the scaling $\left.T^{r} \sim\left|N_{\text {max }}^{r}\right|\right|^{\sigma^{r}}$. We find $\sigma^{1}=2.99(0.96)$ and $\sigma^{2}=3.56(0.98)$.

We first focus our attention on how the time required for the estimation of the spectral density of the graph Laplacian using the NMP approximations scales with size of the network and the size of the largest neighborhood in the network.

Results for $K=N$ are presented in Fig. 3. For compactness, we use the notation $r=r_{\text {max }}$. The relation between computational time T^{r} and network size n is not very neat [Fig. 3(a)]. However, T^{r} grows power as with $\left|N_{\max }^{r}\right|$ in a clear manner [Fig. 3(b)]. The measured exponents are all in line with the expected complexity of the matrix inversion algorithm used to estimate messages within individual neighborhoods [25]. In fact, the inversion algorithm scales cubically with the matrix dimension, thus the computational time of the entire algorithm is dominated by the inversion of the matrix associated with the largest neighborhood in the graph.

Results for $K=10$ are presented in Fig. 4. The relation between computational time \tilde{T}^{r} and network size n is clearly linear [Fig. 4(a)]. \tilde{T}^{r} now grows sublinearly with $\left|N_{\text {max }}^{r}\right|$, however, the relationship is not as clear as the one that relates \tilde{T}^{r} to n [Fig. 4(b)].

In Fig. 5, we compare the ground-truth spectral density with NMP-based estimates obtained at different levels of approximation. Here, we set $r_{\min }=-1$ and $r_{\max }=2$, and we vary K to control for the level of the approximation. The comparison is made for two real-world networks. For small K values, the approximate spectral density fails to properly capture the behavior of the ground-truth density. The accuracy greatly improves as K is increased if K is small. For sufficiently large values of K, no visible changes are apparent in the estimated densities. For example, already for $K=10$ the approximate density appears almost identical to the one obtained for $K=N$.

We test systematically the above two observations in the corpus of real networks. To compare two spectral densities,

FIG. 4. Computational time for the estimation of the spectral density of the graph Laplacian under the heterogeneous approximation. We consider a subset of the 109 real-world networks at our disposal. For each network, we measure the computational time \tilde{T}^{r} required by the NMP algorithm for the computation of the spectral density of the graph Laplacian. Here, we use the compact notation $r=r_{\max }$. Estimates of \tilde{T}^{r} are given in seconds. (a) We plot \tilde{T}^{r} as a function of the network size n. The lines are power-law fits of the data points, i.e., $\tilde{T}^{r} \sim n^{\tilde{\tau}^{r}}$. We find $\tilde{\tau}^{1}=0.98$ (Pearson's linear correlation coefficient 0.93) and $\tilde{\tau}^{2}=1.00(0.94)$. (b) We consider the same networks as in (a), but we test the scaling $\tilde{T}^{r} \sim\left|N_{\max }^{r}\right|^{\tilde{\sigma}^{r}}$. We find $\tilde{\sigma}^{1}=0.80(0.66)$ and $\tilde{\sigma}^{2}=0.81(0.72)$.
we make use of the Hellinger distance, i.e.,

$$
\begin{equation*}
d(\rho, \tilde{\rho})=1-\int_{0}^{10} d z \sqrt{\rho(z) \tilde{\rho}(z)} \tag{11}
\end{equation*}
$$

By definition, we have $0 \leqslant d(\rho, \tilde{\rho}) \leqslant 1$, with $d=0$ indicating perfect agreement between ρ and $\tilde{\rho}$. In Fig. 6(a), we display the cumulative distribution of the Hellinger distance

FIG. 5. Laplacian spectral density of real-world networks. (a) Spectral density of the graph Laplacian $\rho(z)$ for the network of users of the Pretty-Good-Privacy algorithm for secure information interchange [37]. The various approximations are obtained by setting $r_{\text {min }}=-1, r_{\text {max }}=2$, but different K values. The ground-truth density is estimated using LAPACK. (b) Same as in panel (a), but for the Cond-Mat collaboration network [38].

FIG. 6. Accuracy of NMP approximations in reproducing the Laplacian spectral density of real-world networks. (a) We consider a subset of the 109 real-world networks at our disposal. For each network, we estimate the Hellinger distance between the groundtruth Laplacian spectral $\rho(z)$ and its approximation $\tilde{\rho}(z)$ obtained via NMP. In all approximations, we set $r_{\text {min }}=-1$. We vary instead the values of $r_{\text {max }}$ and K. For each approximation, we plot the cumulative distribution function (CDF) of the Hellinger distance over the set of analyzed networks. (b) For each network, we estimate the Hellinger distance between the NMP approximations obtained for $K=10$ and $K=N$. Results of the experiments are obtained for $r_{\min }=-1$. We consider the cases $r_{\max }=1$ and $r_{\max }=2$.
obtained over a subset of networks in our corpus. Comparisons are made between the ground-truth density and different types of approximations. All NMP-based approximations are generally good. The accuracy of the approximation increases if we increase $r_{\text {max }}=1$ to $r_{\max }=2$, and also we increase $K=10$ to $K=N$. However, the change in accuracy is not that dramatic. Indeed, for a fixed value of $r_{\text {max }}$, increasing $K=10$ to $K=N$ generates little changes in the predicted distribution as apparent from the results of Fig. 6(b). For 75% of the networks, the increase $K=10 \rightarrow K=N$ induces a change in the predicted distribution corresponding to a value of the Hellinger distance smaller than 0.01.

We complete the summary of our analysis in Fig. 7. There, we compare different levels of approximations in terms of accuracy and computational time. As expected, we find that increasing $r_{\text {max }}$ while keeping K fixed leads to an increase of accuracy and computational time [Figs. 7(a) and 7(b)]. Only a few exceptions are visible; these are given by very small networks, with sizes $n \leqslant 100$. Quite surprisingly, we find that, for 49% of the analyzed networks, the proposed heterogeneous NMP approximation is faster and more accurate than the standard MP approximation [Fig. 7(c)]. For many small networks, their performance is similar and is obtained in a similar time. The only apparent exceptions are given by five distinct snapshots of the peer-to-peer Gnutella network $[39,40]$, where the MP approximation greatly outperforms the NMP approximation, but with a computational time that is about two orders of magnitude larger than the NMP approximation. Finally, we confirm that the accuracy of the NMP approximation obtained for $r_{\max }=2$ and $K=10$ is almost identical to the one achieved for $r_{\max }=2$ and $K=N$ [Fig. 7(c)]. The only exceptions are still given by the five Gnutella networks. However, the greater accuracy is achieved owing to a significant increase in computational time.

FIG. 7. Tradeoff between time and accuracy in approximating the Laplacian spectral density of real-world networks. (a) We consider the same subset of real networks as in Fig. 6. Each point denotes a network. For each network, we estimate the Hellinger distances between the ground-truth Laplacian spectral density and two NMP approximations, namely approximations a and b, obtained for $r_{\text {max }}=r_{\text {max }}^{(a)}=0, K=K^{(a)}=N$ and $r_{\text {max }}=r_{\text {max }}^{(b)}=1, K=K^{(b)}=N$, respectively. We also measure the computation time required by the approximations. We then plot the ratio between the Hellinger distances of two approximations as a function of the ratio of their computational time. To facilitate the interpretation of the plot, we divided it into four quadrants. The left quadrants denote the region where approximation a is slower than approximation b; the top quadrants indicate that approximation a is less accurate than approximation b. We also report the fraction of networks observed in each of the four quadrants. (b) Same as in (a), but for $r_{\text {max }}^{(a)}=0$, $K=K^{(a)}=N$ and $r_{\max }^{(b)}=2$ and $K=K^{(b)}=N$. (c) Same as in (a), but for $r_{\max }^{(a)}=0, K=K^{(a)}=N$ and $r_{\text {max }}^{(b)}=2$ and $K=K^{(b)}=10$. (d) Same as in (a), but for $r_{\text {max }}^{(a)}=2, K=K^{(a)}=N$ and $r_{\text {max }}^{(b)}=2$ and $K=K^{(b)}=10$.

V. DISCUSSION

We systematically tested the NMP approach on a corpus of 109 networks. We found, in accordance with expectations, that increasing the cycles accounted for by increasing r led to improved accuracy at the expense of speed.

We also introduced a hybrid approach, that uses more accurate approximations for low-degree nodes, and less accurate mean-field approximations at very high-degree nodes. We tested the hybrid approach in estimating the spectral density of the graph Laplacian of the real networks in our corpus. Compared to conventional MP, this approach was more accurate in 81% of networks [Fig. 7(c): $0.49+0.32=0.81$]. In addition, it was also faster in 64% of cases [Fig. 7(c): $0.49+0.15=0.64]$. In a plurality of cases, the approximation was both faster and more accurate than conventional MP.

FIG. 8. Heterogeneous belief propagation for the zero-field Ising model. (a) Average magnetization of the zero-field Ising model for the Pretty-Good-Privacy network [37]. Results are obtained by integrating the heterogeneous NMP equations of Eqs. (4) and (5) with the belief propagation framework of Ref. [26]. The various curves are obtained by setting $r_{\min }=-1, r_{\max }=2$, but allowing K to range over multiple different values. The ground-truth magnetization is estimated using the Wolff cluster Markov chain Monte Carlo (MCMC) algorithm. (b) Same as in (a), but for the Cond-Mat collaboration network [38].

The findings suggest that the NMP framework is applicable to a wide class of networks, even those with very large hubs.

The proposed NMP approach can be used in other problems whose solution can be approximated via conventional MP. Our detailed numerical experiments have focused on spectral density, a problem with ground truth that can be computed numerically for relatively large networks. However, as a final example, we consider the belief propagation framework of Ref. [26] to compute the magnetization of the zero-field Ising model. Figure 8 shows the magnetization for $r_{\min }=-1$, $r_{\text {max }}=2$, and different values of K, for the same networks analyzed in Fig. 5. We see that as we increase K we get improved approximations of the magnetization, and that for $K=10$ the results are quite close to Monte Carlo estimates.

In summary, we find that heterogeneous message passing approximations are effective for heterogeneous networks. Specifically, high-degree nodes can be well accounted for with conventional mean-field approaches, while the corrections due to cycles are incorporated in the lower-degree nodes. Both speed and accuracy can be simultaneously improved by applying appropriate approximations.

ACKNOWLEDGMENTS

The authors thank Ginestra Bianconi, Cristopher Moore, and Mark Newman for helpful conversations. The work was supported by National Science Foundation Grant No. BIGDATA-1838251 (G.T.C.), the Army Research Office Grant No. W911NF-21-1-0194 (F.R.), and the Air Force Office of Scientific Research Grant No. FA9550-21-1-0446 (F.R.). The funders had no role in study design, data collection and analysis, decision to publish, or any opinions, findings, and conclusions or recommendations expressed in the paper.

TABLE I. From left to right, we report the name of the network, the reference of the paper(s) where the network was first analyzed, the URL where the network was retrieved, the number of nodes and edges of the network, the number of nodes in the largest neighborhoods of orders $r=1$ and $r=2$, and the computational time needed to obtain the spectral density of the graph Laplacian via the NMP approximation with $r_{\max }=1$ and $K=N, r_{\max }=2$ and $K=N, r_{\max }=1$ and $K=10$, and $r_{\max }=2$ and $K=10$. The analysis was performed on the largest connected component of each network. Computational time is measured in seconds, and the reported value is rounded to the nearest integer. A computational time equal to 0 s means that less than 0.5 s were required to estimate the spectral density of the graph Laplacian. No computational time is reported for networks that could not be analyzed due to their high computational demand. The asterisk before the network name indicates that we were able to fully compute their spectrum, either exactly or using the various NMP approximations. These are the only networks included in the analysis of Figs. 6 and 7.

Network	Ref.	URL	N	E	$\left\|N_{\text {max }}^{1}\right\|$	$\left\|N_{\text {max }}^{2}\right\|$	T^{1}	T^{2}	\tilde{T}^{1}	\tilde{T}^{2}
*Social 3	[41]	url	32	80	14	22	0	1	0	0
*Karate club	[42]	url	34	78	18	23	0	0	0	0
*Protein 2	[41]	url	53	123	8	19	0	1	0	0
*Dolphins	[43]	url	62	159	12	26	0	3	0	0
*Social 1	[41]	url	67	142	11	18	0	1	0	0
*Les Miserables	[44]	url	77	254	36	55	2	9	0	0
*Protein 1	[41]	url	95	213	7	12	0	1	0	1
*E. coli, transcription	[45]	url	97	212	11	18	0	1	0	1
*Political books	[46]	url	105	441	25	51	7	62	1	1
*David Copperfield	[47]	url	112	425	50	92	13	227	1	1
*College football	[48]	url	115	613	13	39	5	39	1	1
*S 208	[41]	url	122	189	10	10	0	0	0	0
*High school, 2011	[49]	url	126	1709	56	124	122	1824	0	0
*Bay Dry	[50,51$]$	url	128	2106	111	128	244	2801	0	0
*Bay Wet	[51]	url	128	2075	111	128	248	2858	0	0
*Radoslaw Email	[51,52]	url	167	3250	139	143	791	2371	0	0
*High school, 2012	[49]	url	180	2220	56	158	129	4681	0	0
*Little Rock Lake	[51,53]	url	183	2434	105	180	413	4526	0	0
*Jazz	[54]	url	198	2742	101	182	313	7915	0	0
*S 420	[41]	url	252	399	15	14	0	0	0	0
*C. Elegans, neural	[21]	url	297	2148	134	239	374	15720	3	3
*Network Science	[47]	url	379	914	35	42	4	8	1	2
*Dublin	[51,55$]$	url	410	2765	50	164	124	2342	3	3
*US Air Transportation	[56]	url	500	2980	146	301	3119	57958	3	3
*S 838	[41]	url	512	819	23	23	1	2	1	1
*Yeast, transcription	[57]	url	662	1062	72	80	23	69	0	1
*URV email	[58]	url	1133	5451	72	279	289	34546	10	11
Political blogs	[46]	url	1222	16714	351	867	24944		4	4
*Air traffic	[51]	url	1226	2408	35	62	28	139	5	8
*Yeast, protein	[59]	url	1458	1948	57	57	16	34	2	3
Petster, hamster	[51]	url	1788	12476	272	904	24879		25	23
UC Irvine	[51,60]	url	1893	13835	256	1076	11963		9	10
Yeast, protein	[61]	url	2224	6609	65	208			9	13
Japanese	[41]	url	2698	7995	726	1459	181172		8	10
Open flights	[51,62]	url	2905	15645	242	1101			18	18
*GR-QC, 1993-2003	[40]	url	4158	13422	81	187	356	10098	31	40
Tennis	[63]	url	4338	81865	452	2015			21	23

TABLE II. Continuation of Table I.

Network	Ref.	URL	N	E	$\left\|N_{\text {max }}^{1}\right\|$	$\left\|N_{\text {max }}^{2}\right\|$	T^{1}	T^{2}	\tilde{T}^{1}	\tilde{T}^{2}
U.S. power grid	[21]	url	4941	6594	20	28			13	19
HT09	[55]	url	5352	18481	1288	1464			4	9
Hep-Th, 1995-1999	[38]	url	5835	13815	50	136			36	53
Reactome	[51,64]	url	5973	145778	855	2492			135	129
Jung	[51,65]	url	6120	50290	5656	6050			137	250
Gnutella, Aug. 8, 2002	[39,40$]$	url	6299	20776	98	440			14	26
JDK	[51]	url	6434	53658	5923	6356			151	288
AS Oregon	[66]	url	6474	12572	1459	2685			10	18
English	[41]	url	7377	44,205	2569	5585			47	69
Gnutella, Aug. 9, 2002	[39,40]	url	8104	26008	103	421			16	31
French	[41]	url	8308	23832	1892	4405			30	50
Hep-Th, 1993-2003	[40]	url	8638	24806	65	244			64	82
Gnutella, Aug. 6, 2002	[39,40]	url	8717	31525	115	266			20	40
Gnutella, Aug. 5, 2002	[39,40]	url	8842	31837	89	321			22	42
PGP	[37]	url	10680	24316	206	481			74	63
Gnutella, August 42002	[39,40]	url	10876	39994	103	250			30	47
Hep-Ph, 1993-2003	[40]	url	11204	117619	491	1960			247	242
Spanish	[41]	url	11558	43050	2986	7814			59	75
DBLP, citations	[51,67]	url	12495	49563	710	2876			67	77
Spanish	[51]	url	12643	55019	5170	11524			75	117
*Cond-Mat, 1995-1999	[38]	url	13861	44619	107	358	1478	98257	167	188
Astrophysics	[38]	url	14845	119652	361	2050			187	212
Google	[68]	url	15,763	148585	11401	13208			455	740
AstroPhys, 1993-2003	[40]	url	17903	196972	504	3661			219	240
Cond-Mat, 1993-2003	[40]	url	21363	91286	280	1335			433	582
Gnutella, Aug. 25, 2002	[39,40]	url	22663	54693	67	85			42	59
Internet	-	url	22963	48436	2390	6954			62	82
Thesaurus	[51,69$]$	url	23132	297094	1062	9528			165	217
Cora	[51,70]	url	23166	89157	377	818				
Linux, mailing list	[51]	url	24567	158164	2989	10805			520	622
AS Caida	[66]	url	26475	53381	2629	7940			68	97
Gnutella, Aug. 24, 2002	[39,40]	url	26498	65359	355	860				
Hep-Th, citations	[40,51]	url	27400	352021	2469	9467				
Cond-Mat, 1995-2003	[38]	url	27519	116181	202	1108			648	672
Digg	[51,71]	url	29652	84781	283	1657			189	286
Linux, soft.	[51]	url	30817	213208	9339	18740			1195	1759
Enron	[72]	url	33696	180811	1383	8264			590	550

TABLE III. Continuation of Tables I and II.

Network	Ref.	URL	N	E	$\left\|N_{\text {max }}^{1}\right\|$	$\left\|N_{\text {max }}^{2}\right\|$	T^{1}	T^{2}	\tilde{T}^{1}	\tilde{T}^{2}
Hep-Ph, citations	[40,51]	url	34401	420784	846	4440				
Cond-Mat, 1995-2005	[38]	url	36458	171735	278	1855			899	948
Gnutella, Aug. 30, 2002	[39,40]	url	36646	88303	56	86				
Slashdot	[51,73]	url	51083	116573	2916	7732				
Gnutella, Aug. 31, 2002	[39,40]	url	62561	147878	96	111				
Facebook	[74]	url	63392	816886	1099	14291				
Epinions	[51,75]	url	75877	405739	3045	16661				
Slashdot zoo	[51,76]	url	79116	467731	2534	16810				
Flickr	[51,77]	url	105722	2316668	5425	15360				
Wikipedia, edits	[51,78]	url	113123	2025910	20153	72317				
Petster, cats	[51]	url	148826	5447464	80634	136538				
Gowalla	[51,79]	url	196591	950327	14730	55087				
Libimseti	[51,80,81]	url	220970	17233144	33390	181596				
EU email	[40,51]	url	224832	339925	7636	20391				
Web Stanford	[72]	url	255265	1941926	38625	54427				
Amazon, Mar. 2, 2003	[82]	url	262111	899792	420	944				
DBLP, collaborations	[51,67]	url	317080	1049866	344	1431				
Web Notre Dame	[83]	url	325729	1090108	10722	17682				
MathSciNet	[84]	url	332689	820644	496	2454				
CiteSeer	[51,85]	url	365154	1721981	1739	5392				
Zhishi	[51,86]	url	372840	2318025	127067	128431				
Actor coll. net.	[27,51]	url	374511	15014839	3956	125645				
Amazon, Mar. 12, 2003	[82]	url	400727	2349869	2747	6158				
Amazon, Jun. 6, 2003	[82]	url	403364	2443311	2752	5738				
Amazon, May 5, 2003	[82]	url	410236	2439437	2760	6491				
Petster, dogs	[51]	url	426485	8543321	46504	313475				
Road network PA	[72]	url	1087562	1541514	9	13				
YouTube friend. net.	[51,87]	url	1134890	2987624	28755	137387				
Road network TX	[72]	url	1351137	1879201	13	19				
AS Skitter	[66]	url	1694616	11094209	35455	128203				
Road network CA	[72]	url	1957027	2760388	13	17				
Wikipedia, pages	[84]	url	2070367	42336614	230041	1640275				
U.S. Patents	[51,88]	url	3764117	16511740	794	4228				
DBpedia	[51,89]	url	3915921	12577253	469692	897744				
LiveJournal	[51,90]	url	5189809	48688097	15018	182439				

[1] M. E. J. Newman, Proc. R. Soc. A 479, 20220774 (2023).
[2] B. Karrer and M. E. J. Newman, Phys. Rev. E 82, 016101 (2010).
[3] A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborová, Phys. Rev. E 90, 012801 (2014).
[4] A. Y. Lokhov, M. Mézard, and L. Zdeborová, Phys. Rev. E 91, 012811 (2015).
[5] F. Altarelli, A. Braunstein, L. DallAsta, and R. Zecchina, J. Stat. Mech. (2013) P09011.
[6] F. Altarelli, A. Braunstein, L. DallAsta, J. R. Wakeling, and R. Zecchina, Phys. Rev. X 4, 021024 (2014).
[7] G. Bianconi, H. Sun, G. Rapisardi, and A. Arenas, Phys. Rev. Res. 3, L012014 (2021).
[8] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Phys. Rev. Lett. 107, 065701 (2011).
[9] F. Radicchi, Phys. Rev. E 97, 022316 (2018).
[10] F. Radicchi and C. Castellano, Phys. Rev. Lett. 120, 198301 (2018).
[11] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 68, 046109 (2003).
[12] T. Rogers, I. P. Castillo, R. Kühn, and K. Takeda, Phys. Rev. E 78, 031116 (2008).
[13] B. Karrer, M. E. J. Newman, and L. Zdeborová, Phys. Rev. Lett. 113, 208702 (2014).
[14] K. E. Hamilton and L. P. Pryadko, Phys. Rev. Lett. 113, 208701 (2014).
[15] F. Radicchi and C. Castellano, Nat. Commun. 6, 10196 (2015).
[16] G. Bianconi, Phys. Rev. E 96, 012302 (2017).
[17] G. Bianconi, Phys. Rev. E 97, 022314 (2018).
[18] M. Mezard and A. Montanari, Information, Physics, and Computation (Oxford University Press, Oxford, UK, 2009).
[19] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge University Press, Cambridge, UK, 2003).
[20] S. Melnik, A. Hackett, M. A. Porter, P. J. Mucha, and J. P. Gleeson, Phys. Rev. E 83, 036112 (2011).
[21] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
[22] M. E. J. Newman, Networks (Oxford University Press, Oxford, UK, 2010).
[23] M. E. J. Newman, Phys. Rev. Lett. 103, 058701 (2009).
[24] F. Radicchi and C. Castellano, Phys. Rev. E 93, 030302(R) (2016).
[25] G. T. Cantwell and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 116, 23398 (2019).
[26] A. Kirkley, G. T. Cantwell, and M. E. J. Newman, Sci. Adv. 7, eabf1211 (2021).
[27] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[28] G. Bianconi and M. Marsili, J. Stat. Mech. (2005) P06005.
[29] F. Radicchi, Phys. Rev. E 91, 010801(R) (2015).
[30] Y. Weiss, Neural Comput. 12, 1 (2000).
[31] R. Zivan, O. Lev, and R. Galiki, Proc. AAAI Conf. Artif. Intell. 34, 7333 (2020).
[32] R. Merris, Linear Algebra Appl. 197-198, 143 (1994).
[33] F. Chung, L. Lu, and V. Vu, Proc. Natl. Acad. Sci. USA 100, 6313 (2003).
[34] F. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics (American Mathematical Society, Providence, RI, 1997).
[35] T. Biyikoglu, T. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs: Perron-Frobenius and Faber-Krahn Type Theorems, Lecture Notes in Mathematics (Springer, Berlin, 2007).
[36] LAPACK - Linear Algebra PACKage, https://netlib.org/ lapack/, accessed: 2023-03-28.
[37] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, Phys. Rev. E 70, 056122 (2004).
[38] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[39] R. Matei, A. Iamnitchi, and P. Foster, Mapping the Gnutella network, in IEEE Internet Computing (IEEE, 2002), Vol. 6, pp. 50-57.
[40] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans. Knowl. Discov. Data 1, 2 (2007).
[41] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, Science 303, 1538 (2004).
[42] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).
[43] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003).
[44] D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing (Addison-Wesley, Reading, MA, 1993), Vol. 37.
[45] S. Mangan and U. Alon, Proc. Natl. Acad. Sci. USA 100, 11980 (2003).
[46] L. A. Adamic and N. Glance, Proceedings of the 3rd International Workshop on Link Discovery (ACM, New York, 2005), pp. 36-43.
[47] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[48] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002).
[49] J. Fournet and A. Barrat, PLoS One 9, e107878 (2014).
[50] R. Ulanowicz, C. Bondavalli, and M. Egnotovich, Annual Report to the United States Geological Service Biological Resources Division Ref. No. [UMCES] CBL, 1998, pp. 98-123.
[51] J. Kunegis, WWW '13 Companion: Proceedings of the 22nd International Conference on World Wide Web (ACM, New York, 2013), pp. 1343-1350.
[52] R. Michalski, S. Palus, and P. Kazienko, Lecture Notes in Business Information Processing (Springer, Berlin, 2011), Vol. 87, pp. 197-206.
[53] N. D. Martinez, Ecol. Monogr. 61, 367 (1991).
[54] P. M. Gleiser and L. Danon, Adv. Complex Syst. 06, 565 (2003).
[55] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den Broeck, J. Theor. Biol. 271, 166 (2011).
[56] V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nat. Phys. 3, 276 (2007).
[57] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Science 298, 824 (2002).
[58] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas, Phys. Rev. E 68, 065103(R) (2003).
[59] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, Nature (London) 411, 41 (2001).
[60] T. Opsahl and P. Panzarasa, Soc. Networks 31, 155 (2009).
[61] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang et al., Nucleic Acids Res. 31, 2443 (2003).
[62] T. Opsahl, F. Agneessens, and J. Skvoretz, Soc. Networks 32, 245 (2010).
[63] F. Radicchi, PLoS One 6, e17249 (2011).
[64] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D'Eustachio, E. Schmidt, B. de Bono, B. Jassal, G. Gopinath, G. Wu, L. Matthews et al., Nucleic Acids Res. 33, D428 (2005).
[65] L. Šubelj and M. Bajec, Proceedings of the First International Workshop on Software Mining (ACM, New York, 2012), pp. 9-16.
[66] J. Leskovec, J. Kleinberg, and C. Faloutsos, Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (ACM, New York, 2005), pp. 177-187.
[67] M. Ley, String Processing and Information Retrieval (Springer, Berlin, 2002), pp. 1-10.
[68] G. Palla, I. J. Farkas, P. Pollner, I. Derenyi, and T. Vicsek, New J. Phys. 9, 186 (2007).
[69] G. R. Kiss, C. Armstrong, R. Milroy, and J. Piper, The Computer and Literary Studies (University Press, Edinburgh, UK, 1973), pp. 153-165.
[70] L. Šubelj and M. Bajec, Model of complex networks based on citation dynamics, in WWW '13 Companion: Proceedings of the 22nd International Conference on World Wide Web, pp. 527-530.
[71] M. De Choudhury, H. Sundaram, A. John, and D. D. Seligmann, CSE'09: International Conference on Computational Science and Engineering (IEEE, New York, 2009), Vol. 4, pp. 151-158.
[72] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Internet Math. 6, 29 (2009).
[73] V. Gómez, A. Kaltenbrunner, and V. López, Proceedings of the 17th International Conference on World Wide Web (ACM, New York, 2008), pp. 645-654.
[74] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, Proceedings of the 2nd ACM Workshop on Online Social Networks (ACM, New York, 2009), pp. 37-42.
[75] M. Richardson, R. Agrawal, and P. Domingos, The Semantic Web-ISWC 2003 (Springer, Berlin, 2003), pp. 351-368.
[76] J. Kunegis, A. Lommatzsch, and C. Bauckhage, Proceedings of the 18th International Conference on World Wide Web (ACM, New York, 2009), pp. 741-750.
[77] J. McAuley and J. Leskovec, Advances in Neural Information Processing Systems (MIT Press, Cambridge, MA, 2012), pp. 548-556.
[78] U. Brandes and J. Lerner, J. Classif. 27, 279 (2010).
[79] E. Cho, S. A. Myers, and J. Leskovec, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2011), pp. 1082-1090.
[80] L. Brozovsky and V. Petricek, arXiv:cs/0703042.
[81] J. Kunegis, G. Gröner, and T. Gottron, Proceedings of the 4th ACM RecSys Workshop on Recommender Systems and the Social Web (ACM, New York, 2012), pp. 37-44.
[82] J. Leskovec, L. A. Adamic, and B. A. Huberman, ACM Trans. Web 1, 5 (2007).
[83] R. Albert, H. Jeong, and A.-L. Barabási, Nature (London) 401, 130 (1999).
[84] G. Palla, I. J. Farkas, P. Pollner, I. Derényi, and T. Vicsek, New J. Phys. 10, 123026 (2008).
[85] K. D. Bollacker, S. Lawrence, and C. L. Giles, Proceedings of the Second International Conference on Autonomous Agents (ACM, New York, 1998), pp. 116-123.
[86] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and Y. Yu, The Semantic Web-ISWC 2011 (Springer, Berlin, 2011), pp. 205-220.
[87] J. Yang and J. Leskovec, Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics (ACM, New York, 2012), p. 3.
[88] B. H. Hall, A. B. Jaffe, and M. Trajtenberg, Tech. Rep., National Bureau of Economic Research, 2001 (unpublished).
[89] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, DBpedia: A Nucleus for a Web of Open Data (Springer, Berlin, 2007).
[90] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (ACM, New York, 2007), pp. 29-42.

