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Message passing (MP) is a computational technique used to find approximate solutions to a variety of
problems defined on networks. MP approximations are generally accurate in locally treelike networks but require
corrections to maintain their accuracy level in networks rich with short cycles. However, MP may already be
computationally challenging on very large networks and additional costs incurred by correcting for cycles could
be prohibitive. We show how the issue can be addressed. By allowing each node in the network to have its own
level of approximation, one can focus on improving the accuracy of MP approaches in a targeted manner. We
perform a systematic analysis of 109 real-world networks and show that our node-based MP approximation
is able to increase both the accuracy and speed of traditional MP approaches. We find that, compared to
conventional MP, a heterogeneous approach based on a simple heuristic is more accurate in 81% of tested
networks, faster in 64% of cases, and both more accurate and faster in 49% of cases.
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I. INTRODUCTION

Message passing (MP), sometimes called belief propaga-
tion or the cavity method, is a computational technique aimed
at solving problems or characterizing processes on networks
[1]. Examples include spreading processes [2–7], community
detection [8,9], sampling strategies [10], spectral properties
[11,12], and percolation [13–17].

MP techniques are closely related to mean-field approxi-
mations [18,19], in which one relates a quantity of interest
at each node to those of their neighbors. For example,
the event in which someone catches an infectious disease
is related to whether the people they are in contact with
catch the disease. A mean-field analysis proceeds by re-
placing unknown quantities defined on the nodes of the
network with average or expected values, (incorrectly) as-
suming that these quantities are independent. One derives a
set of self-consistent equations to be solved. In such mean-
field approximations there is one equation for each node
in the network. Unfortunately, these approximations can be
inaccurate.

MP approaches follow a similar logic but at least par-
tially account for correlations induced by edges. In place
of the independence assumption of a mean-field approxi-
mation, one makes a conditional independence assumption.
As for mean-field approximations, MP approximations in-
troduce a system of self-consistent equations to be solved.
Now, however, there are two equations for each edge in the
network.

Conventional MP techniques are often exact on trees (net-
works without cycles), and are justified on general networks

by a locally treelike assumption. When applied to real net-
works, MP methods often generate fairly accurate predictions
[20]. Mistakes in the predictions can be attributed to the in-
ability of the locally treelike assumption to account for the
correlations introduced by cycles.

However, because many networks have a relatively high
density of short cycles it is important to be able to account
for them. Social networks, for instance, typically have large
numbers of triangles [21,22]. One mechanism that would give
rise to a large number of triangles is triadic closure—the
process whereby two of your friends become friends with each
other. Likewise shared familial, vocational, or geographical
ties can lead to densely connected subgroups of individuals,
and hence large numbers of triangles.

A few attempts to account for correlations due to short
loops exist in the literature. Some previous methods, such as
those of Refs. [23,24], do not generalize to arbitrary combi-
nations of short loops, or suffer from the limitation of being
problem specific. One promising direction is the approach of
Cantwell and Newman [25], which accounts for correlations
caused by arbitrary short loops.

The framework of Ref. [25] relies on a procedure for
constructing appropriately defined neighborhoods around
each node. We will refer to this procedure as the neighborhood
message passing (NMP) approach. The size of the neighbor-
hoods can be increased in order to improve the accuracy of
the predictions, but this increase in accuracy comes at the
cost of an increasingly complex set of equations to solve.
The utility of NMP follows from the fact that the method
provides good results for relatively small neighborhoods.
The accuracy of NMP has been demonstrated for bond
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percolation, spectral properties of sparse matrices, and the
Ising
model [25,26].

However, many networks have heterogeneous degree dis-
tributions [27], and this property may cause unique problems.
First, heterogeneous degree distributions can imply a large
density of short cycles [28]. In a random graph with n nodes
and degree distribution pk , the expected number of triangles
per node 〈t〉 is to leading order

〈t〉 ∝ 〈k2〉3

2n〈k〉3
, (1)

where 〈k〉 = ∑
k kpk and 〈k2〉 = ∑

k k2 pk . If 〈k2〉 diverges
as n1/3 or faster, the expected number of triangles per node
diverges, even if the network is sparse.

Second, heterogeneous degree distributions may cause MP
schemes to be somewhat more computationally demanding
than they are in networks with homogeneous degree distribu-
tions. By definition, each node of degree k has k edges. Each
of these edges has a corresponding equation that typically de-
pends on k − 1 other variables. Evaluating these equations for
a network with n nodes may thus require O(n〈k2〉) operations.
When 〈k2〉 is large (or diverging) the numerical solution of the
equations could be expensive.

Heterogeneous degree distributions may thus cause both
accuracy and speed degradation for traditional MP ap-
proaches. As discussed, the NMP approach trades off speed
for accuracy in networks with short cycles. For networks with
relatively homogeneous degree distributions, such as social or
biological networks [22], the cost may be quite acceptable.
However, NMP may considerably exacerbate the speed issues
caused by heterogeneous degree distributions, and the addi-
tional cost may simply be prohibitive. In this paper, we present
a solution to this problem, allowing for accurate and fast
approximations for real-world networks with heterogeneous
degree distributions.

Our solution embraces heterogeneity and relies on an
appropriately heterogeneous approximation. Large-degree
nodes can be approximated by conventional mean-field
approximations, since the aggregate fluctuations of their
neighbors should be small by the law of large numbers.
Conversely, low-degree nodes can be approximated either by
conventional MP, or by NMP when there is a large density of
short loops. By tailoring the level of approximation for each
node we can deploy our method to arbitrary networks.

The remaining sections of the paper are structured as fol-
lows. In Sec. II, we systematically explore the properties of
neighborhoods in real-world networks, observing consider-
able heterogeneity. In Secs. III and IV, we first derive and
then test a heterogeneous NMP approach for computing the
spectral properties of real networks. We find that our approach
is able to increase on both the accuracy and the speed of MP
in about 50% of cases. Finally, in Sec. V, we show that the
NMP approach can be also used in estimating properties of
the zero-field Ising model on networks, and then conclude the
paper.

FIG. 1. Definition of the r neighborhood of a node. We denote
the order r neighborhood of node i as Er

i . Neighborhoods are nat-
urally defined in terms of edges; the set of nodes that are in the
neighborhood, i.e., Nr

i , is composed of all nodes at the end of at least
one edge in Er

i . For the focal node i, shown as a red square in the
figure, the neighborhood E 0

i consists of all edges incident to the node,
depicted in red (edges between the square and the circles). For E 1

i ,
the neighborhood consists of all edges in E 0

i along with all edges
between neighbors of i, depicted in blue (edges between circles).
For E 2

i , the neighborhood consists of all edges in E 1
i along with all

edges on paths of length two neighbors of i, depicted in yellow (edges
between circles and triangles). Nodes in the neighborhoods N0

i and
N1

i are denoted by blue circles; N2
i is composed of all nodes denoted

as either blue circles or yellow triangles.

II. NEIGHBORHOOD HETEROGENEITY

In the NMP approach, one sets a value of r for the network.
Given r � 0, one constructs the neighborhoods of each node,
defined by a set of edges. Specifically, the r neighborhood
around node i, denoted Er

i , consists of all edges incident to
node i, along with all paths of length r or shorter between
nodes adjacent to i. An example of this construction is shown
in Fig. 1. All nodes that appear at the end of edges in Er

i
compose the set Nr

i . Note, r neighborhoods are defined by
cycles; the neighborhood Nr

i is not equivalent to the set of
nodes that are at distance r from node i.

To begin, we compute the size of the neighborhoods of
109 real-world networks. Percolation properties of these net-
works have been investigated in Refs. [15,24,29]. The corpus
contains networks of different nature, including technological,
biological, social, and information networks. See Tables I–III
for details. All networks in the corpus are relatively sparse.
Other structural properties—e.g., size, clustering coefficient,
average length, degree distribution, and degree correlations—
vary greatly within the corpus.

To get a sense of how the NMP approximation will scale,
we look at the dependence of the size of the largest neigh-
borhood, i.e., |Nr

max| = maxi |Nr
i |, with the network size. Our

results, reported in Fig. 2, indicate that the size of the largest
neighborhood grows with the network size. There are a few
networks for which the largest neighborhood are very small
compared to the network size. This is the case of networks
with homogeneous degree distributions and/or strong spatial

034310-2



HETEROGENEOUS MESSAGE PASSING FOR … PHYSICAL REVIEW E 108, 034310 (2023)

FIG. 2. Size of the largest neighborhoods in real-world networks.
(a) We consider 109 real-world networks. For each network, we
evaluate the size of the largest neighborhood |Nr

max| and plot it as
a function of the size n of the network. Each point in the plot
refers to a network. The lines are power-law fits of the data points,
i.e., |Nr

max| ∼ nβr
. The best fit is obtained using linear regression

on the logarithms of the data. We find β1 = 0.57 (Pearson’s linear
correlation coefficient 0.69) and β2 = 0.67 (0.71). (b) Cumulative
distribution function (CDF) of |Nr

max|. Data are the same as in (a).

embedding, as for example road networks. Networks with
heterogeneous degree distributions are instead characterized
by large neighborhoods. To give quantitative references, we
find that for 50% of the networks, |N2

max| � 0.22 n.
In summary, these results show that some networks contain

large neighborhoods. If the NMP equations scale poorly with
the neighborhood size then the approach will be infeasible. In
the next section, we remedy this by adjusting r at the level of
individual nodes.

III. HETEROGENEOUS MESSAGE PASSING

A. General approach

In the NMP approach of Ref. [25] one chooses a single
value of r. Using the neighborhoods, and specific to the prob-
lem at hand, one derives a set of MP equations of the form

Hi = �i
(
H i←Nr

i

)
(2)

Hi← j = �i← j
(
H i←Nr

j \Nr
i

)
, (3)

where H i←Nr
i

is the vector of Hi← j for j ∈ Nr
i , and �i and

�i← j are problem-specific MP functions. A MP algorithm
consists of initializing the variables (e.g., at random) and
then iterating this set of equations until they converge to
a fixed point. In general, convergence may not be mathe-
matically guaranteed; necessary and sufficient conditions for
convergence are unclear, but this does not appear to be a
significant problem in practice [30,31]. When setting r =
0, these equations reduce to the conventional MP ones. In-
creasing r should increase the accuracy of the approach, but
potentially with a considerable increase of the computational
cost.

As discussed, in a heterogeneous network there may be
competing considerations on how to appropriately set the
value of r. For example, in a sparse network with a high
density of short cycles, we are likely to require r � 1 for
an accurate approximation. On the other hand, heterogeneous
degree distributions may even increase the cost to solving the
traditional MP equations. Further increasing the complexity

of the equations to be solved by increasing r may simply be
untenable. How should one proceed?

Our solution is based on the simple observation that the
neighborhood formalism does not actually require that each
neighborhood is constructed with the same value of r. Around
nodes that are dense with short cycles but have relatively low
degree, we can increase r. This increases accuracy with only
a small increase to computational cost. Conversely, for nodes
with very high degrees, we can decrease r to reduce computa-
tional burden without a significant decrease in accuracy. In
fact, for nodes with extremely high degree we should find
Hi← j ≈ Hj , i.e., that the messages have the same numerical
value as the marginals. Making this approximation corre-
sponds to a mean-field approximation, and helps to further
reduce the computational cost caused by high-degree nodes.

We allow each node i to have its own approximation value
ri. Rewriting the NMP equations but with heterogeneous r we
get

Hi = �i
(
H i←N

ri
i

)
, (4)

Hi← j =
{

Hj if r j = −1,

�i← j
(
H i←N

r j
j \N

ri
i

)
if r j � 0.

(5)

Note we allow r j = −1 and use this notation to indicate the
standard mean-field approximation.

Below, we test the ability of heterogeneous NMP to ac-
count for the spectral properties of large networks. We find
that increasing r does indeed increase the accuracy of the
approach over conventional MP, at the expense of increased
compute time. However, by setting ri = 0 for large-degree
nodes, we retain much of the improved accuracy for only a
small additional cost compared to conventional MP. Remark-
ably, by setting ri = −1 for the large-degree nodes, we find it
is possible to derive an algorithm that is able to improve on
both accuracy and speed, compared to conventional MP.

B. Spectral density estimation

As a specific application, we consider an heterogeneous
NMP approximation for the estimation of the spectral density
of the graph operators, e.g., adjacency matrix, graph Lapla-
cian. The spectral density of matrix M with eigenvalues λk is
defined

ρ(z) = − 1

nπ

n∑
k=1

1

z − λk
(6)

for complex z.
Following Ref. [25], one can approximate ρ(z) by first

solving the MP equations

Hi(z) =
∑
w∈Wi

|w|
∏
j∈w

1

z − Hi← j (z)
, (7)

Hi← j (z) =
∑

w∈Wj\i

|w|
∏
k∈w

1

z − Hj←k (z)
, (8)

where the sum is over all closed walks w in the neighborhood
N0

i or N0
j \ N0

i , respectively, and |w| is the product of all
edges in the walk. These equations can be solved relatively
efficiently using matrix algebra—see Ref. [25]—and finally
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one approximates

ρ(z) = − 1

nπ

n∑
i=1

1

z − Hi(z)
. (9)

In the NMP heterogeneous approximation, we mostly leave
the equations unchanged, except that now we allow the neigh-
borhood Nri

i of node i to be defined with its own value of ri,
and also allow for the mean-field approximation, i.e.,

Hi← j (z) =
{

Hj (z), r j = −1,∑
w∈Wj\i

|w|∏k∈w
1

z−Hj←k (z) , r j � 0.
(10)

To establish the desired value of ri for each node i, we
set parameters rmin, rmax, and K . The value of ri is chosen to
be the largest value rmin � ri � rmax so that |Nri

i | � K . This
procedure imposes ri = rmin whenever the degree of node i is
larger than K . Otherwise, it imposes ri as large as possible so
that the neighborhood contains no more than K nodes.

IV. NUMERICAL RESULTS

We estimate the spectral density of the graph Laplacian of
the real networks in our corpus. The spectral properties of the
Laplacian are important for many graph applications, includ-
ing graph invariants (e.g., connectivity, expanding properties,
genus, diameter, mean distance, and chromatic number),
partition problems (e.g, graph bisection, connectivity and
separation, isoperimetric numbers, maximum cut, clustering,
graph partition), and optimization problems (e.g., cut width,
bandwidth, min-p-sum problems, ranking, scaling, quadratic
assignment problem) [32–35]. We estimate the ground-truth
density, namely ρ(z), using the standard numerical library
LAPACK [36]. This method requires a time that scales as the
cube of the network size.

NMP approximations, denoted with ρ̃(z), are instead ob-
tained numerically solving Eqs. (9) and (10). We consider
different levels of approximations. We always set rmin = −1;
we consider rmax = 0, rmax = 1, and rmax = 2; we vary the
value of the parameter K . For K = N � |Nr

max|, no heteroge-
neous approximation is de facto implemented, and the above
approach reduces to the one already considered in Ref. [25].

The densities ρ(z) and ρ̃(z) are computed for z ∈ [0, 10]
and with a resolution dz = 0.2. In particular, we normalize
the densities within the interval [0, 10]. In the NMP approx-
imations, we use ε = 0.1 as the value of the broadening
parameter, see Ref. [25] for details. All numerical tests are
performed on a server with Intel(R) Xeon(R) CPU E5-2690
v4 @ 2.60GHz CPUs and 378 GB of RAM.

Not all the networks in our corpus are part of the analysis.
For K = N , we consider only networks with a number of
nodes N � 20 000. For K = 10, we consider all networks with
size N � 100 000. Irrespective of the level of the approxima-
tion, we let the algorithm run for up to 7 days on our machine.
For the slowest NMP approximation, i.e., rmax = 2 and K =
N , we were able to estimate the spectral density of the graph
Laplacian only for 41 networks. For faster approximations, the
number of analyzed networks was higher. Details are provided
in Tables I–III.

FIG. 3. Computational time for the estimation of the spectral
density of the graph Laplacian. We consider a subset of the 109
real-world networks at our disposal. For each network, we measure
the computational time T r required by the NMP algorithm for the
computation of the spectral density of the graph Laplacian. Here,
we use the compact notation r = rmax. Estimates of T r are given in
seconds. (a) We plot T r as a function of the network size n. The
lines are power-law fits of the data points, i.e., T r ∼ nτ r

. Fits are
obtained using simple linear regression between the log-transformed
variables. We find τ 1 = 1.21 (Pearson’s linear correlation coefficient
0.64) and τ 2 = 1.32(0.48). (b) We consider the same networks as in
(a), but we test the scaling T r ∼ |Nr

max|σ r
. We find σ 1 = 2.99(0.96)

and σ 2 = 3.56(0.98).

We first focus our attention on how the time required for
the estimation of the spectral density of the graph Laplacian
using the NMP approximations scales with size of the network
and the size of the largest neighborhood in the network.

Results for K = N are presented in Fig. 3. For compact-
ness, we use the notation r = rmax. The relation between
computational time T r and network size n is not very neat
[Fig. 3(a)]. However, T r grows power as with |Nr

max| in a
clear manner [Fig. 3(b)]. The measured exponents are all in
line with the expected complexity of the matrix inversion
algorithm used to estimate messages within individual neigh-
borhoods [25]. In fact, the inversion algorithm scales cubically
with the matrix dimension, thus the computational time of the
entire algorithm is dominated by the inversion of the matrix
associated with the largest neighborhood in the graph.

Results for K = 10 are presented in Fig. 4. The relation
between computational time T̃ r and network size n is clearly
linear [Fig. 4(a)]. T̃ r now grows sublinearly with |Nr

max|, how-
ever, the relationship is not as clear as the one that relates T̃ r

to n [Fig. 4(b)].
In Fig. 5, we compare the ground-truth spectral density

with NMP-based estimates obtained at different levels of ap-
proximation. Here, we set rmin = −1 and rmax = 2, and we
vary K to control for the level of the approximation. The
comparison is made for two real-world networks. For small
K values, the approximate spectral density fails to properly
capture the behavior of the ground-truth density. The accu-
racy greatly improves as K is increased if K is small. For
sufficiently large values of K , no visible changes are apparent
in the estimated densities. For example, already for K = 10
the approximate density appears almost identical to the one
obtained for K = N .

We test systematically the above two observations in the
corpus of real networks. To compare two spectral densities,
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FIG. 4. Computational time for the estimation of the spectral
density of the graph Laplacian under the heterogeneous approxima-
tion. We consider a subset of the 109 real-world networks at our
disposal. For each network, we measure the computational time T̃ r

required by the NMP algorithm for the computation of the spectral
density of the graph Laplacian. Here, we use the compact notation
r = rmax. Estimates of T̃ r are given in seconds. (a) We plot T̃ r as
a function of the network size n. The lines are power-law fits of
the data points, i.e., T̃ r ∼ nτ̃ r

. We find τ̃ 1 = 0.98 (Pearson’s linear
correlation coefficient 0.93) and τ̃ 2 = 1.00(0.94). (b) We consider
the same networks as in (a), but we test the scaling T̃ r ∼ |Nr

max|σ̃ r
.

We find σ̃ 1 = 0.80(0.66) and σ̃ 2 = 0.81(0.72).

we make use of the Hellinger distance, i.e.,

d (ρ, ρ̃ ) = 1 −
∫ 10

0
dz

√
ρ(z)ρ̃(z). (11)

By definition, we have 0 � d (ρ, ρ̃ ) � 1, with d = 0 indi-
cating perfect agreement between ρ and ρ̃. In Fig. 6(a), we
display the cumulative distribution of the Hellinger distance

FIG. 5. Laplacian spectral density of real-world networks.
(a) Spectral density of the graph Laplacian ρ(z) for the network of
users of the Pretty-Good-Privacy algorithm for secure information
interchange [37]. The various approximations are obtained by setting
rmin = −1, rmax = 2, but different K values. The ground-truth density
is estimated using LAPACK. (b) Same as in panel (a), but for the
Cond-Mat collaboration network [38].

FIG. 6. Accuracy of NMP approximations in reproducing the
Laplacian spectral density of real-world networks. (a) We consider
a subset of the 109 real-world networks at our disposal. For each
network, we estimate the Hellinger distance between the ground-
truth Laplacian spectral ρ(z) and its approximation ρ̃(z) obtained via
NMP. In all approximations, we set rmin = −1. We vary instead the
values of rmax and K . For each approximation, we plot the cumulative
distribution function (CDF) of the Hellinger distance over the set of
analyzed networks. (b) For each network, we estimate the Hellinger
distance between the NMP approximations obtained for K = 10 and
K = N . Results of the experiments are obtained for rmin = −1. We
consider the cases rmax = 1 and rmax = 2.

obtained over a subset of networks in our corpus. Compar-
isons are made between the ground-truth density and different
types of approximations. All NMP-based approximations are
generally good. The accuracy of the approximation increases
if we increase rmax = 1 to rmax = 2, and also we increase
K = 10 to K = N . However, the change in accuracy is not that
dramatic. Indeed, for a fixed value of rmax, increasing K = 10
to K = N generates little changes in the predicted distribution
as apparent from the results of Fig. 6(b). For 75% of the
networks, the increase K = 10 → K = N induces a change
in the predicted distribution corresponding to a value of the
Hellinger distance smaller than 0.01.

We complete the summary of our analysis in Fig. 7. There,
we compare different levels of approximations in terms of
accuracy and computational time. As expected, we find that
increasing rmax while keeping K fixed leads to an increase
of accuracy and computational time [Figs. 7(a) and 7(b)].
Only a few exceptions are visible; these are given by very
small networks, with sizes n � 100. Quite surprisingly, we
find that, for 49% of the analyzed networks, the proposed
heterogeneous NMP approximation is faster and more ac-
curate than the standard MP approximation [Fig. 7(c)]. For
many small networks, their performance is similar and is
obtained in a similar time. The only apparent exceptions are
given by five distinct snapshots of the peer-to-peer Gnutella
network [39,40], where the MP approximation greatly out-
performs the NMP approximation, but with a computational
time that is about two orders of magnitude larger than the
NMP approximation. Finally, we confirm that the accuracy of
the NMP approximation obtained for rmax = 2 and K = 10 is
almost identical to the one achieved for rmax = 2 and K = N
[Fig. 7(c)]. The only exceptions are still given by the five
Gnutella networks. However, the greater accuracy is achieved
owing to a significant increase in computational time.
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FIG. 7. Tradeoff between time and accuracy in approximating
the Laplacian spectral density of real-world networks. (a) We con-
sider the same subset of real networks as in Fig. 6. Each point
denotes a network. For each network, we estimate the Hellinger dis-
tances between the ground-truth Laplacian spectral density and two
NMP approximations, namely approximations a and b, obtained for
rmax = r (a)

max = 0, K = K (a) = N and rmax = r (b)
max = 1, K = K (b) = N ,

respectively. We also measure the computation time required by
the approximations. We then plot the ratio between the Hellinger
distances of two approximations as a function of the ratio of their
computational time. To facilitate the interpretation of the plot, we
divided it into four quadrants. The left quadrants denote the re-
gion where approximation a is slower than approximation b; the
top quadrants indicate that approximation a is less accurate than
approximation b. We also report the fraction of networks observed
in each of the four quadrants. (b) Same as in (a), but for r (a)

max = 0,
K = K (a) = N and r (b)

max = 2 and K = K (b) = N . (c) Same as in (a),
but for r (a)

max = 0, K = K (a) = N and r (b)
max = 2 and K = K (b) = 10.

(d) Same as in (a), but for r (a)
max = 2, K = K (a) = N and r (b)

max = 2 and
K = K (b) = 10.

V. DISCUSSION

We systematically tested the NMP approach on a corpus
of 109 networks. We found, in accordance with expectations,
that increasing the cycles accounted for by increasing r led to
improved accuracy at the expense of speed.

We also introduced a hybrid approach, that uses more ac-
curate approximations for low-degree nodes, and less accurate
mean-field approximations at very high-degree nodes. We
tested the hybrid approach in estimating the spectral density
of the graph Laplacian of the real networks in our corpus.
Compared to conventional MP, this approach was more ac-
curate in 81% of networks [Fig. 7(c): 0.49 + 0.32 = 0.81].
In addition, it was also faster in 64% of cases [Fig. 7(c):
0.49 + 0.15 = 0.64]. In a plurality of cases, the approxima-
tion was both faster and more accurate than conventional MP.

FIG. 8. Heterogeneous belief propagation for the zero-field Ising
model. (a) Average magnetization of the zero-field Ising model for
the Pretty-Good-Privacy network [37]. Results are obtained by inte-
grating the heterogeneous NMP equations of Eqs. (4) and (5) with
the belief propagation framework of Ref. [26]. The various curves
are obtained by setting rmin = −1, rmax = 2, but allowing K to range
over multiple different values. The ground-truth magnetization is es-
timated using the Wolff cluster Markov chain Monte Carlo (MCMC)
algorithm. (b) Same as in (a), but for the Cond-Mat collaboration
network [38].

The findings suggest that the NMP framework is applicable to
a wide class of networks, even those with very large hubs.

The proposed NMP approach can be used in other prob-
lems whose solution can be approximated via conventional
MP. Our detailed numerical experiments have focused on
spectral density, a problem with ground truth that can be com-
puted numerically for relatively large networks. However, as a
final example, we consider the belief propagation framework
of Ref. [26] to compute the magnetization of the zero-field
Ising model. Figure 8 shows the magnetization for rmin = −1,
rmax = 2, and different values of K , for the same networks
analyzed in Fig. 5. We see that as we increase K we get
improved approximations of the magnetization, and that for
K = 10 the results are quite close to Monte Carlo estimates.

In summary, we find that heterogeneous message pass-
ing approximations are effective for heterogeneous networks.
Specifically, high-degree nodes can be well accounted for
with conventional mean-field approaches, while the correc-
tions due to cycles are incorporated in the lower-degree nodes.
Both speed and accuracy can be simultaneously improved by
applying appropriate approximations.
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TABLE I. From left to right, we report the name of the network, the reference of the paper(s) where the network was first analyzed, the
URL where the network was retrieved, the number of nodes and edges of the network, the number of nodes in the largest neighborhoods of
orders r = 1 and r = 2, and the computational time needed to obtain the spectral density of the graph Laplacian via the NMP approximation
with rmax = 1 and K = N , rmax = 2 and K = N , rmax = 1 and K = 10, and rmax = 2 and K = 10. The analysis was performed on the largest
connected component of each network. Computational time is measured in seconds, and the reported value is rounded to the nearest integer.
A computational time equal to 0 s means that less than 0.5 s were required to estimate the spectral density of the graph Laplacian. No
computational time is reported for networks that could not be analyzed due to their high computational demand. The asterisk before the
network name indicates that we were able to fully compute their spectrum, either exactly or using the various NMP approximations. These are
the only networks included in the analysis of Figs. 6 and 7.

Network Ref. URL N E |N1
max| |N2

max| T 1 T 2 T̃ 1 T̃ 2

*Social 3 [41] url 32 80 14 22 0 1 0 0
*Karate club [42] url 34 78 18 23 0 0 0 0
*Protein 2 [41] url 53 123 8 19 0 1 0 0
*Dolphins [43] url 62 159 12 26 0 3 0 0
*Social 1 [41] url 67 142 11 18 0 1 0 0
*Les Miserables [44] url 77 254 36 55 2 9 0 0
*Protein 1 [41] url 95 213 7 12 0 1 0 1
*E. coli, transcription [45] url 97 212 11 18 0 1 0 1
*Political books [46] url 105 441 25 51 7 62 1 1
*David Copperfield [47] url 112 425 50 92 13 227 1 1
*College football [48] url 115 613 13 39 5 39 1 1
*S 208 [41] url 122 189 10 10 0 0 0 0
*High school, 2011 [49] url 126 1709 56 124 122 1824 0 0
*Bay Dry [50,51] url 128 2106 111 128 244 2801 0 0
*Bay Wet [51] url 128 2075 111 128 248 2858 0 0
*Radoslaw Email [51,52] url 167 3250 139 143 791 2371 0 0
*High school, 2012 [49] url 180 2220 56 158 129 4681 0 0
*Little Rock Lake [51,53] url 183 2434 105 180 413 4526 0 0
*Jazz [54] url 198 2742 101 182 313 7915 0 0
*S 420 [41] url 252 399 15 14 0 0 0 0
*C. Elegans, neural [21] url 297 2148 134 239 374 15 720 3 3
*Network Science [47] url 379 914 35 42 4 8 1 2
*Dublin [51,55] url 410 2765 50 164 124 2342 3 3
*US Air Transportation [56] url 500 2980 146 301 3119 57 958 3 3
*S 838 [41] url 512 819 23 23 1 2 1 1
*Yeast, transcription [57] url 662 1062 72 80 23 69 0 1
*URV email [58] url 1133 5451 72 279 289 34 546 10 11
Political blogs [46] url 1222 16 714 351 867 24 944 4 4
*Air traffic [51] url 1226 2408 35 62 28 139 5 8
*Yeast, protein [59] url 1458 1948 57 57 16 34 2 3
Petster, hamster [51] url 1788 12 476 272 904 24 879 25 23
UC Irvine [51,60] url 1893 13 835 256 1076 11 963 9 10
Yeast, protein [61] url 2224 6609 65 208 9 13
Japanese [41] url 2698 7995 726 1459 181 172 8 10
Open flights [51,62] url 2905 15 645 242 1101 18 18
*GR-QC, 1993–2003 [40] url 4158 13 422 81 187 356 10 098 31 40
Tennis [63] url 4338 81 865 452 2015 21 23
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http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/
http://konect.uni-koblenz.de/networks/foodweb-baydry
http://konect.uni-koblenz.de/networks/foodweb-baywet
http://konect.uni-koblenz.de/networks/radoslaw_email
http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/
http://konect.uni-koblenz.de/networks/maayan-foodweb
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://konect.uni-koblenz.de/networks/sociopatterns-infectious
https://sites.google.com/site/cxnets/usairtransportationnetwork
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
http://www-personal.umich.edu/~mejn/netdata/
http://konect.uni-koblenz.de/networks/maayan-faa
http://www3.nd.edu/~networks/resources.htm
http://konect.uni-koblenz.de/networks/petster-friendships-hamster
http://konect.uni-koblenz.de/networks/opsahl-ucsocial
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://konect.uni-koblenz.de/networks/opsahl-openflights
http://snap.stanford.edu/data/ca-GrQc.html
http://-


CANTWELL, KIRKLEY, AND RADICCHI PHYSICAL REVIEW E 108, 034310 (2023)

TABLE II. Continuation of Table I.

Network Ref. URL N E |N1
max| |N2

max| T 1 T 2 T̃ 1 T̃ 2

U.S. power grid [21] url 4941 6594 20 28 13 19
HT09 [55] url 5352 18 481 1288 1464 4 9
Hep-Th, 1995–1999 [38] url 5835 13 815 50 136 36 53
Reactome [51,64] url 5973 145 778 855 2492 135 129
Jung [51,65] url 6120 50 290 5656 6050 137 250
Gnutella, Aug. 8, 2002 [39,40] url 6299 20 776 98 440 14 26
JDK [51] url 6434 53 658 5923 6356 151 288
AS Oregon [66] url 6474 12 572 1459 2685 10 18
English [41] url 7377 44,205 2569 5585 47 69
Gnutella, Aug. 9, 2002 [39,40] url 8104 26 008 103 421 16 31
French [41] url 8308 23 832 1892 4405 30 50
Hep-Th, 1993-2003 [40] url 8638 24 806 65 244 64 82
Gnutella, Aug. 6, 2002 [39,40] url 8717 31 525 115 266 20 40
Gnutella, Aug. 5, 2002 [39,40] url 8842 31 837 89 321 22 42
PGP [37] url 10 680 24 316 206 481 74 63
Gnutella, August 4 2002 [39,40] url 10 876 39 994 103 250 30 47
Hep-Ph, 1993-2003 [40] url 11 204 117 619 491 1960 247 242
Spanish [41] url 11 558 43 050 2986 7814 59 75
DBLP, citations [51,67] url 12 495 49 563 710 2876 67 77
Spanish [51] url 12 643 55 019 5170 11 524 75 117
*Cond-Mat, 1995–1999 [38] url 13 861 44 619 107 358 1478 98 257 167 188
Astrophysics [38] url 14 845 119 652 361 2050 187 212
Google [68] url 15,763 148 585 11 401 13 208 455 740
AstroPhys, 1993–2003 [40] url 17 903 196 972 504 3661 219 240
Cond-Mat, 1993–2003 [40] url 21 363 91 286 280 1335 433 582
Gnutella, Aug. 25, 2002 [39,40] url 22 663 54 693 67 85 42 59
Internet − url 22 963 48 436 2390 6954 62 82
Thesaurus [51,69] url 23 132 297 094 1062 9528 165 217
Cora [51,70] url 23 166 89 157 377 818
Linux, mailing list [51] url 24 567 158 164 2989 10 805 520 622
AS Caida [66] url 26 475 53 381 2629 7940 68 97
Gnutella, Aug. 24, 2002 [39,40] url 26 498 65 359 355 860
Hep-Th, citations [40,51] url 27 400 352 021 2469 9467
Cond-Mat, 1995–2003 [38] url 27 519 116 181 202 1108 648 672
Digg [51,71] url 29 652 84 781 283 1657 189 286
Linux, soft. [51] url 30 817 213 208 9339 18 740 1195 1759
Enron [72] url 33 696 180 811 1383 8264 590 550
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http://www-personal.umich.edu/~mejn/netdata/
http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/
http://www-personal.umich.edu/~mejn/netdata/
http://konect.uni-koblenz.de/networks/reactome
http://konect.uni-koblenz.de/networks/subelj_jung-j
http://snap.stanford.edu/data/p2p-Gnutella08.html
http://konect.uni-koblenz.de/networks/subelj_jdk
http://snap.stanford.edu/data/as.html
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://snap.stanford.edu/data/p2p-Gnutella09.html
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://snap.stanford.edu/data/ca-HepTh.html
http://snap.stanford.edu/data/p2p-Gnutella06.html
http://snap.stanford.edu/data/p2p-Gnutella05.html
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
http://snap.stanford.edu/data/p2p-Gnutella04.html
http://snap.stanford.edu/data/ca-HepPh.html
http://wws.weizmann.ac.il/mcb/UriAlon/index.php?q=download/collection-complex-networks
http://konect.uni-koblenz.de/networks/dblp-cite
http://konect.uni-koblenz.de/networks/lasagne-spanishbook
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://cfinder.org
http://snap.stanford.edu/data/ca-AstroPh.html
http://snap.stanford.edu/data/ca-CondMat.html
http://snap.stanford.edu/data/p2p-Gnutella25.html
http://www-personal.umich.edu/~mejn/netdata/
http://konect.uni-koblenz.de/networks/eat
http://konect.uni-koblenz.de/networks/subelj_cora
http://konect.uni-koblenz.de/networks/lkml-reply
http://snap.stanford.edu/data/as-caida.html
http://snap.stanford.edu/data/p2p-Gnutella24.html
http://konect.uni-koblenz.de/networks/cit-HepTh
http://www-personal.umich.edu/~mejn/netdata/
http://konect.uni-koblenz.de/networks/munmun_digg_reply
http://konect.uni-koblenz.de/networks/linux
http://snap.stanford.edu/data/email-Enron.html
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TABLE III. Continuation of Tables I and II.

Network Ref. URL N E |N1
max| |N2

max| T 1 T 2 T̃ 1 T̃ 2

Hep-Ph, citations [40,51] url 34 401 420 784 846 4440
Cond-Mat, 1995-2005 [38] url 36 458 171 735 278 1855 899 948
Gnutella, Aug. 30, 2002 [39,40] url 36 646 88 303 56 86
Slashdot [51,73] url 51 083 116 573 2916 7732
Gnutella, Aug. 31, 2002 [39,40] url 62 561 147 878 96 111
Facebook [74] url 63 392 816 886 1099 14 291
Epinions [51,75] url 75 877 405 739 3045 16 661
Slashdot zoo [51,76] url 79 116 467 731 2534 16 810
Flickr [51,77] url 105 722 2 316 668 5425 15 360
Wikipedia, edits [51,78] url 113 123 2 025 910 20 153 72 317
Petster, cats [51] url 148 826 5 447 464 80 634 136 538
Gowalla [51,79] url 196 591 950 327 14 730 55 087
Libimseti [51,80,81] url 220 970 17 233 144 33 390 181 596
EU email [40,51] url 224 832 339 925 7636 20 391
Web Stanford [72] url 255 265 1 941 926 38 625 54 427
Amazon, Mar. 2, 2003 [82] url 262 111 899 792 420 944
DBLP, collaborations [51,67] url 317 080 1 049 866 344 1431
Web Notre Dame [83] url 325 729 1 090 108 10 722 17 682
MathSciNet [84] url 332 689 820 644 496 2454
CiteSeer [51,85] url 365 154 1 721 981 1739 5392
Zhishi [51,86] url 372 840 2 318 025 127 067 128 431
Actor coll. net. [27,51] url 374 511 15 014 839 3956 125 645
Amazon, Mar. 12, 2003 [82] url 400 727 2 349 869 2747 6158
Amazon, Jun. 6, 2003 [82] url 403 364 2 443 311 2752 5738
Amazon, May 5, 2003 [82] url 410 236 2 439 437 2760 6491
Petster, dogs [51] url 426 485 8 543 321 46 504 313 475
Road network PA [72] url 1 087 562 1 541 514 9 13
YouTube friend. net. [51,87] url 1 134 890 2 987 624 28 755 137 387
Road network TX [72] url 1 351 137 1 879 201 13 19
AS Skitter [66] url 1 694 616 11 094 209 35 455 128 203
Road network CA [72] url 1 957 027 2 760 388 13 17
Wikipedia, pages [84] url 2 070 367 42 336 614 230 041 1 640 275
U.S. Patents [51,88] url 3 764 117 16 511 740 794 4228
DBpedia [51,89] url 3 915 921 12 577 253 469 692 897 744
LiveJournal [51,90] url 5 189 809 48 688 097 15 018 182 439
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