Math 670 Homework 2

Assigned 09/21, Due 10/02

- 1. If G is a group considered as a category, prove that a natural tranformation on the identity functor of G is just an element of the center of G.
- 2. Prove that a contravariant representable functor maps an epimorphism to a monomorphism.
- 3. Consider a functor $F: \mathcal{D} \longrightarrow \mathcal{C}$ and an object C of \mathcal{C} Let $\mathcal{K}_C: \mathcal{D} \longrightarrow \mathcal{C}$ be the constant functor on C. Prove that a cone on F is just a natural transformation $\mathcal{K}_C \Rightarrow F$.
- 4. Let **Rel** be the category of sets and (binary) relations. Show that this indeed is a category. Prove that all finite products and coproducts exist.
- 5. For functors $S, T : \mathcal{C} \longrightarrow \mathcal{P}$ where \mathcal{C} is a category and \mathcal{P} is a preorder considered as a category, show that there is a natural transformation $S \Rightarrow T$ (which is then unique) if and only if $SC \leq TC$ for every object C in C.
- 6. Let $(G_i)_{i \in I}$ be a family of abelian groups. Prove that their coproduct is given by the definition given in class.
- 7. Consider the category with objects (X, e, t), where X is a set, $e \in X$ and $t : X \longrightarrow X$ and with arrows $f : (X, e, t) \longrightarrow (X', e', t')$ the functions $f : X \longrightarrow X'$ such that f(e) = e' and ft = t'f. Prove that this category has an initial object in which X is the set of natural numbers including 0, e = 0 and t is the successor function (t(n) = n + 1).