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TAC+: Optimizing Error-Bounded Lossy
Compression for 3D AMR Simulations
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Abstract—Today’s scientific simulations require significant data
volume reduction because of the enormous amounts of data pro-
duced and the limited I/O bandwidth and storage space. Error-
bounded lossy compression has been considered one of the most
effective solutions to the above problem. However, little work
has been done to improve error-bounded lossy compression for
Adaptive Mesh Refinement (AMR) simulation data. Unlike the
previous work that only leverages 1D compression, in this work,
we propose an approach (TAC) to leverage high-dimensional SZ
compression for each refinement level of AMR data. To remove the
data redundancy across different levels, we propose several pre-
process strategies and adaptively use them based on the data fea-
tures. We further optimize TAC to TAC+ by improving the lossless
encoding stage of SZ compression to handle many small AMR
data blocks after the pre-processing efficiently. Experiments on 10
AMR datasets from three real-world large-scale AMR simulations
demonstrate that TAC+ can improve the compression ratio by up
to 4.9× under the same data distortion, compared to the state-
of-the-art method. In addition, we leverage the flexibility of our
approach to tune the error bound for each level, which achieves
much lower data distortion on two application-specific metrics.

Index Terms—Data reduction, lossy compression, adaptive
mesh refinement (AMR), scientific computing.

I. INTRODUCTION

THe increase in supercomputer performance over the past
decades has been insufficient to solve many challenging

modeling and simulation problems. For example, the complex-
ity of solving evolutionary partial differential equations scales
as Ω(n4), where n is the number of mesh points per dimension.
Thus, the performance improvement of about three orders of
magnitudes over the past 30 years has meant just a 5.6× gain
in spatio-temporal resolution [?]. To address this issue, many
high-performance computing (HPC) simulation packages [?]
(such as AMReX [?] and Athena++ [?]) use Adaptive Mesh
Refinement (AMR)—which applies computation to selective
regions of most interest—to increase resolution. Compared to
the method where a high resolution is applied everywhere, the
AMR method greatly reduces the computational complexity
and storage overhead; thus, it is one of the most widely used
frameworks for many HPC applications [?], [?], [?], [?].

Although AMR can save storage space to some extent, AMR
applications running on supercomputers still generate large
amounts of data, bringing challenges to data transmission and
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storage. For example, one Nyx simulation [?] with a resolution
of 40963 (i.e., 0.5 × 20483 mesh points in the coarse level and
0.5 × 40963 in the fine level ) can generate up to 1.8 TB of
data for a single snapshot; a total of 1.8 PB of disk storage
is needed assuming running the simulation 5 times with 200
snapshots dumped per simulation. Therefore, reducing data size
is necessary to lower the storage overhead and I/O cost and
improve the overall application performance for running large-
scale AMR simulations on supercomputers.

A straightforward way to address this issue is to use data
compression. However, traditional lossless compression tech-
niques such as GZIP [?] and Zstandard [?] can only provide
a compression ratio by up to 2× for scientific data [?]. On
the other hand, a new generation of lossy compressors that
can provide strict error control (called “error-bounded” lossy
compression) has been developed, such as SZ [?], [?], [?],
ZFP [?], MGARD [?], and TTHRESH [?]. Using those error-
bounded lossy compressors, scientists can achieve relatively
high compression ratios while minimizing the quality loss of
reconstructed data and post-analysis, as seen in [?], [?], [?],
[?], [?], [?], [?], [?].

However, a gap exists between data compression and AMR
data. The root of this disparity lies in the hierarchical nature of
AMR data, where the entire dataset possesses varying resolu-
tions/levels. Data at each level is sparse because it only covers
a portion of the domain. Yet, current scientific compressors
exclusively support the compression of non-sparse data with
uniform resolution. Consequently, AMR data must be prepro-
cessed prior to compression.

A straightforward pre-process would be to flatten the high-
dimensional AMR data from different levels into a 1D array
for compression. However, this approach would cause the data
to lose a significant amount of spatial information, which is
critical for compression performance optimization.

To leverage high-dimension compression, a common ap-
proach is to generate uniform-resolution data by upsampling
the coarse-level data and merging it with the finest-level data.
However, this method introduces redundant information, which
significantly reduces the compression ratio. This degradation
is especially pronounced when the upsampling rate is high
or when multiple coarse levels need to be upsampled. This
presents us with a dilemma in compressing AMR data: we
are forced to choose between losing spatial locality (by com-
pressing in 1D) or introducing redundant information (by using
upsampled 3D data).

Only a few existing contributions have investigated advanced
error-bounded lossy compression for AMR applications and
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datasets. Recently, Luo et al. introduced zMesh [?], a technique
that pre-processs the data by grouping data points that are
mapped to the same or adjacent geometric coordinates such
that the dataset is smoother and more compressible. However,
since zMesh maps data points from different AMR levels to
adjacent geometric coordinates and generates a 1D array, it still
cannot adopt 3D compression which most HPC simulations
use. Moreover, zMesh is designed for patch-based AMR data1

and the reorganization approach proposed by zMesh cannot
improve the data smoothness appropriately (see Section IV).

To solve these issues, we propose TAC that removes the
redundant data in coarser level(s) and employs 3D lossy com-
pression for each level. We note that each level may contain
many empty/zero regions, where data points are saved in other
levels, which may significantly decrease the data smoothness
and hence reduce the compression ratio. To this end, TAC either
removes these empty regions using adaptive partition strategies
or partially pads them with appropriate values, based on the
density of empty regions.

Another challenge is that the partition strategies can gen-
erate many (e.g., 3,000+) small data blocks, whereas the SZ
compressor performs poorly on small data sets because of the
Huffman encoding cost (will be detailed in Section III-D).
TAC’s solution to the heavy Huffman encoding cost is to
linearize/merge the small blocks and then pass these merged
blocks to SZ. This approach can reduce the cost of the Huffman
encoding. However, TAC still faces a critical limitation: most of
the merged small blocks are not adjacent in the original dataset,
leading to rapid changes in the data values between these non-
neighboring blocks, which can negatively impact the accuracy
of SZ’s predictor.

To address the limitations, we further optimize TAC to
TAC+ by designing a Shared Huffman Encoding (SHE) ap-
proach for the SZ compressor. This approach allows individual
predictions for each small block while being encoded using a
single shared Huffman tree, which can improve the prediction
accuracy and compression ratio accordingly.

The main contributions are summarized as follows.
• We propose to leverage 3D SZ compression to compress

each level of an AMR dataset separately. We propose a
hybrid compression approach based on the following three
pre-process strategies and data characteristics.

• We propose an optimized sparse tensor representation to
efficiently partition data and remove empty regions for
sparse AMR data.

• We propose an enhanced k-d tree approach to reduce the
time overhead of removing empty regions.

• We propose a padding approach to improve the smooth-
ness and compressibility of dense AMR data.

• We employ the SHE approach in the SZ compressor to
reduce the high time and storage costs of compressing
multiple small blocks in order to achieve better compres-
sion on AMR data after the partition.

• We tune the error bound for each AMR level to further im-
prove the compression quality in terms of two application-

1The patch-based AMR data redundantly saves the data block to be refined
at the next finer level in the current coarse level (see Section II-C).

specific post-analysis metrics.
• Experiments show that, compared to the state-of-the-art

approach zMesh, our proposed AMR compression can
improve the compression ratio by up to 4.9× under the
same data distortion on the tested datasets.

We evaluate our proposed compression method on ten
datasets from three real-world AMR applications: Nyx [?],
WarpX [?], and IAMR [?]. We compare our method with
four baselines including zMesh using generic metrics such as
compression ratio and peak signal-to-noise ratio (PSNR) and
application-specific metrics such as power spectrum and halo
finder. Our code is available at https://github.com/hipdac-lab/
HPDC22-TAC.

The remaining paper is organized as follows. In Section II,
we present background information about error-bounded lossy
compression, AMR method, k-d tree, and related work on AMR
data compression. In Section III, we describe our proposed pre-
process strategies, SHE approach, and hybrid compression. In
Section IV, we show the experimental results on different AMR
datasets. In Section V, we conclude our work and discuss the
future work.

II. BACKGROUND AND RELATED WORK

A. Lossy Compression for Scientific Data
There are two main categories for data compression: lossless

and lossy compression. Compared to lossless compression,
lossy compression can offer a much higher compression ra-
tio by trading a little bit of accuracy. There are some well-
developed lossy compressors for images and videos such as
JPEG [?] and MPEG [?], but they do not have a good perfor-
mance on the scientific data because they are mainly designed
for integers rather than floating points.

In recent years there is a new generation of lossy compressors
that are designed for scientific data, such as SZ [?], [?], [?],
ZFP [?], MGARD [?], and TTHRESH [?]. These lossy com-
pressors provide parameters that allow users to finely control
the information loss introduced by lossy compression. Unlike
traditional lossy compressors such as JPEG [?] for images (in
integers), SZ, ZFP, MGARD, and TTHRESH are designed to
compress floating-point data and can provide a strict error-
controlling scheme based on the user’s requirements. Generally,
lossy compressors provide multiple compression modes, such
as error-bounding mode and fixed-rate mode. Error-bounding
mode requires users to set an error type, such as the point-wise
absolute error bound and point-wise relative error bound, and
an error bound level (e.g., 10−3). The compressor ensures that
the differences between the original data and the reconstructed
data do not exceed the user-set error bound level.

In this work, we focus on the SZ lossy compression (2021
R&D 100 Award Winner [?]) because SZ typically provides a
higher compression ratio than ZFP [?], [?] and higher speeds
than MGARD [?], [?] and TTHRESH [?]. SZ is a prediction-
based error-bounded lossy compressor for scientific data. It
has three main steps: (1) predict each data point’s value based
on different prediction methods; (2) quantize the difference
between the real value and predicted value based on the user-set
error bound; and (3) apply a customized Huffman coding and
lossless compression.

https://github.com/hipdac-lab/HPDC22-TAC
https://github.com/hipdac-lab/HPDC22-TAC
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Fig. 1: Visualization (one zoom-in 2D slice) of three key timesteps generated
from an AMR-based cosmology simulation. The grid structure changes with
the universe’s evolution. The red boxes indicate different resolutions within one
AMR level.

The SZ framework comprises a series of algorithms tailored
to various user and application needs. In this study, we primarily
focus on its two principal algorithms: the compression algo-
rithm that utilizes the Lorenzo and linear regression predictors,
denoted as “Lor/Reg” [?], and the compression algorithm based
on the spline interpolation approach, denoted as “Interp” [?].
Specifically, the Lor/Reg method begins by truncating the entire
input data into smaller blocks. It then applies either the Lorenzo
predictor or the high-dimensional linear regression to each
block separately. In contrast, the Interp algorithm carries out
global interpolation across all three dimensions of the complete
dataset. The Lor/Reg and Interp algorithms differ significantly,
resulting in varied performance and features when compressing
AMR data. A more in-depth discussion on this can be found in
Sections III-D, III-E, andIV-E.

B. AMR Method and AMR Data

AMR is a method adapting the accuracy of a solution by
using a non-uniform grid to increase computational and storage
savings while still achieving the desired accuracy. AMR appli-
cations change the mesh or spatial resolution based on the level
of refinement needed by the simulation and use finer mesh in
the regions with more importance/interest and coarser mesh in
the regions with less importance/interest. Figure 1 shows that
the mesh will be refined when the value meets the refinement
criteria, e.g., refining a block when its norm of the gradients or
maximum value is larger than a threshold.

Fig. 2: A typical example of AMR data storage and usage.

Clearly, the data generated by an AMR application are hier-
archical data with different resolutions. The data of each AMR
level are usually stored separately (e.g., in a 1D array). For
example, Figure 2 (left) shows a simple example of two-level
AMR data; “0” means high resolution (the fine level) and “1”
for low resolution (the coarse level). When the AMR data are
needed for post analysis or visualization, users will typically

convert the data from different levels to a uniform resolution. In
the previous example, we will up-sample the data at the coarse
level and combine it with the data at the fine level, as shown in
Figure 2 (right).

C. Tree-based and Patch-based AMR Data

There are two types of techniques to represent AMR data:
patch-based AMR and tree-based AMR [?]. The main differ-
ence between them is that the patch-based AMR technique
generates AMR data with redundancy across different levels. In
other words, the patch-based AMR data structure redundantly
saves data blocks to be refined at the next level in the current
level, simplifying the computation in the refinement process.
By comparison, the tree-based AMR technique organizes the
grids on the tree leaves, so there is no redundant data across
different levels. But tree-based AMR data is more complex for
post analysis and visualization compared to patch-based AMR
data [?].

In this work, we focus on a state-of-the-art patch-based AMR
framework AMReX. Note that since the redundant coarser-level
data in the patch-based AMR will not often be used in post-
analysis, we discard them during compression to improve the
compression ratio.

D. Existing AMR Data Compression

1D AMR Compression: The main challenge for AMR data
compression is that the AMR data is comprehensive and hi-
erarchical with different resolutions. A naive approach is to
compress the 1D data of each AMR level separately. However,
this approach loses most of the topological/spatial information,
which is critical for data compression. zMesh [?] is a state-
of-the-art AMR data compression based on the 1D approach.
Different from the naive 1D approach, zMesh re-organizes the
1D data based on each point’s coordinate in the 2D layout;
in other words, zMesh puts the points neighbored in the 2D
layout closer in the 1D array. It can increase the data smooth-
ness/compressibility to benefit the following 1D compression
such as SZ on patch-based AMR data with redundancy across
different AMR levels. However, zMesh does not leverage high-
dimensional compression, while many previous studies [?],
[?] proved that leveraging more dimensional information (e.g.,
spatial/temporal information) can significantly improve the
compression performance. Moreover, it only focuses on 2D
AMR data. Our work aims to leverage high-dimensional data
compression and supports 3D AMR data.

High-dimensional AMR Compression: Similar to the idea
described in Section II-B, a straightforward way to leverage
3D compression on 3D AMR data is to compress different
levels together by up-sampling coarse levels. However, this
approach must handle extra redundant data generated by the
up-sampling process. As shown in Figure 2, 1A, 1B, and 1C
are redundant points in the compression. Note that the storage
overhead of these redundant points will be higher when more
data are in the coarse levels or the up-sampling rate is higher,
especially for 3D AMR data. This is because we only need
to duplicate one point from the coarse level 4 times for 2D
AMR data but 8 times for 3D AMR data, with an up-sampling
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rate of 2. Another limitation of this approach is that it cannot
apply different compression configurations (e.g., error bound)
to different AMR levels. This is because after up-sampling
all data points will have the same importance. However, the
purpose of using the AMR method is to set different interests to
different AMR levels, so the error bound for each AMR level
can be chosen adaptively.

E. k-D Tree for Particle Data Compression

k-d tree [?] is a binary tree in which every node represents a
certain space. Without loss of generality, for the 3D case, every
non-leaf node in a k-d tree splits the space into two parts by
a 2D plane associated with one of the three dimensions. The
left subspace is associated with the left child of the node, while
the right subspace is associated with the right child. k-d tree
is commonly used in particle data compression [?], [?], [?] to
locate each particle and remove empty regions. Specifically,
a k-d tree keeps dividing the space in between along one
dimension until the space is empty or contains only one particle.
We will optimize the classic k-d tree and use it to remove empty
regions and increase the compressibility for each AMR level (to
be detailed in Section III-C).

III. OUR PROPOSED DESIGN

In this section, we introduce a compression framework
tailored for AMR data, utilizing high-dimensional SZ lossy
compression for each AMR level. Our initial proposal, TAC,
integrates three pre-process strategies to address the challenges
posed by irregular data distributions. Extending TAC, we
present TAC+. In TAC+, we refine two pre-process methods
from the original TAC and introduce Shared Huffman Encoding
(SHE). We then integrate SHE with the Lor/Reg algorithm
to bolster compression efficacy for AMR data. Furthermore,
we propose adaptive approaches for TAC/TAC+, enabling the
selection of the most suitable pre-process method based on each
level’s data density.

A. Ghost-Shell Padding for High-density Data

To compress the AMR data in 3D, besides the aforemen-
tioned 3D baseline, we can also compress each level separately
in 3D. In that way, however, the data will be split into multiple
levels, and each level will have many empty regions and an ir-
regular data distribution, as shown in Figure 4. A naive solution
to handle the irregular 3D data is to fill the empty regions with
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Fig. 3: Workflow overview of our proposed TAC and TAC+.

(a) z10 fine level (b) z10 coarse level

Fig. 4: Visualization of data distributions of an example AMR data “z10”,
where z = redshift. Non-empty regions are shown in red.

Fig. 5: A 2D example of GSP approach. Non-empty blocks are in navy blue;
padded blocks are in light blue/red; padded blocks based on more than one non-
empty neighbor are in red.

zeros and pass a large 3D block to the compressor. Although the
padded zeros will increase the size of data for compression, for
high-density data such as z10’s coarse level shown in Figure 4b
(i.e., about 77% density), the size overhead will be small.

However, these padded zeros can also greatly reduce the
performance of compression, especially for prediction-based
lossy compression such as SZ, because these zeros can signif-
icantly affect the prediction accuracy of SZ, resulting in high
compression errors on the boundaries, as shown in Figure 6a.
More specifically, as mentioned in Section III-B, SZ uses each
point’s neighboring points’ values to predict its value. Thus,
for those boundary points that are adjacent to padded zeros, SZ
will involve zero(s) in the prediction, while the actual values
of these empty regions are typically non-zeros (saved in other
AMR levels), which will seriously mislead the prediction.

To eliminate the above issue of padding zeroes, we propose
to use a ghost-shell padding strategy (GSP) to diffuse neighbor-
ing values to a padding layer. Figure 5 illustrates the high-level
idea, and the detailed algorithm is described in Algorithm 1.
Specifically, we first partition the data into unit blocks and then
pad each empty unit block by using the average of its non-
empty neighbors’ boundary data values.

Note that some empty unit blocks have more than one non-
empty neighbor such as the red box shown in Figure 5. For these
blocks, we will use the average value of all its neighbors for
padding. Correspondingly, we will remove these padded values
in the decompression based on the saved padding information.
Note that since the padding process is only for non-empty
blocks, this metadata overhead is almost negligible for high-
density data (e.g., 0.1%).

After padding, each boundary point will be predicted using
the average of all the boundary data in the unit block(s) to which
it belongs or is neighbored. As shown in Figure 6, compared
to the zero-filling (ZF) approach, GSP can significantly reduce
the overall compression error, especially for the boundary data.
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Algorithm 1: Proposed Ghost Shell Padding Method

Input: Data, m
Output: Data after padding

1 for each unit block bi do
2 m = min(unitBlockSize/2, 4);
3 if bi is empty and bi has non-empty neighbor then
4 for each non-empty neighbor nj do
5 pad slice = avg (first m slices of nj next

to bi);
6 if overlap edge then
7 pad = pad/2;
8 else if overlap corner then
9 pad = pad/3;

10 else
11 continue;
12 end
13 add an m-layers pad slice to bi next to

nj;
14 end
15 end
16 end
17 return padded Data

Moreover, the GSP approach can provide a similar compression
ratio to the ZF approach on this high-density data and hence a
better rate-distortion.

Note that besides using the average values, we can also
use values that aid the compression predictor in making the
most accurate predictions for padding. However, this requires
running the predictor an extra time to determine the best values,
making the process more time-consuming. Furthermore, as
illustrated in Figure 6, average padding already significantly
reduces the compression error on boundary when compared to
zero padding. Thus, we chose to use the average values to avoid
sacrificing too much performance.

B. Optimized Sparse Tensor Representation for Low-density
Data

When most of the regions in the data are empty (e.g., about
77% of the data is empty in Figure 4a), the large amount

(a) ZF (CR=156.7, PSNR=32.8dB) (b) GSP (CR=161.3, PSNR=33.5dB)
Fig. 6: Visual comparison (one slice) of compression errors of two approaches
using SZ based on Nyx’s “baryon density” field (i.e., z10’s coarse level, 77%
density). Brighter means higher compression error. The error bound is the
relative error bound of 6.7× 10−3.

of padded data would greatly increase the size of data for
compression, resulting in a low compression ratio.

To solve this issue, we propose to use a naive sparse-tensor-
based approach (called NaST) to remove the empty regions,
as shown in Figure 7. NaST includes four main steps in the
compression process: (1) partition the 3D data into multiple unit
blocks, (2) remove the empty blocks, (3) linearize the remaining
3D blocks into a 4D array, and (4) pass the 4D array to the
compressor. Note that in the decompression process, we will
put the unit blocks from the decompressed 4D array back into
the original data.

Fig. 7: Workflow of the naive sparse tensor (NaST) method (empty regions
marked in pink and non-empty regions marked in blue).

However, in order to completely remove the empty regions
to form a sparse representation, the unit block size needs to be
relatively small compared to the input data size (e.g., 163 vs.
5123). This results in a reduced spatial locality because of the
partitioning. Also, a high proportion of data will be on the block
boundary. Given that the linearized unit blocks may not be con-
tiguous in the original dataset, their boundaries aren’t smooth,
making it challenging for compressors like SZ to predict values
accurately." As a result, the NaST method without optimizing
the unit block size would have low compression performance.

To address the above problems, we propose an optimized
sparse tensor representation (called OpST) to effectively re-
move the empty regions as well as maintain a relatively large
unit block size so as to increase the spatial locality and reduce
the portion of boundary data. A detailed description of our
algorithm can be found in Algorithm 2. We use a 2D example
to demonstrate our approach, as illustrated in Figure 8. Specif-
ically, (1) we partition the data into many small unit blocks.
(2) For each unit block, we use the dynamic programming
method to initiate an array BS to save the dimension/size of the
maximum square whose bottom-right corner is that unit block
(line 6, which will be discussed in the next paragraph). (3) We
extract the sub-blocks (composed of multiple unit blocks) from
the original data according to the sizes saved in BS (lines 13).
(4) Since the original data will be changed after the extraction,
we need to partially update BS based on maxSide (lines 14, will
be discussed later). We loop (3) and (4) from the bottom-right
corner to the top-left corner until the original data is empty. (5)
After extracting all the sub-blocks, we put them into multiple
3D arrays (to be compressed) based on their sizes. Note that
the sub-blocks with the same size will be merged into the same
array for easy compression.

When initializing the BS in step (2), we start with the b′[i][j]
with i = 0 or j = 0 (i.e., on the top-left edge), where b′[·][·]
are the unit blocks: if b′[i][j] is empty, we will set BS[i][j]
to 0 otherwise 1. For the remaining unit blocks, if it is empty,
BS[i][j] will be 0; otherwise, BS[i][j] will be set to 1 plus the
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Fig. 8: A 2D example of our proposed OpST approach. The sub-blocks are
extracted according to our optimized sizes saved in BS. E.g., a 2-by-2 sub-
block B0 is extracted according to BS1[2][1].

Algorithm 2: Proposed Optimized Sparse Tensor Method

Input: Sparse 3D data S
Output: multiple 4D array Dn

1 for each unit block b(x, y, z) do
2 if b(x, y, z) is non-empty then
3 if x is 0 or y is 0 or z is 0 then
4 BS(x, y, z) = 1
5 else
6 BS(x, y, z) = min(BS(x− 1, y, z), BS(x, y −

1, z), BS(x, y, z − 1), BS(x− 1, y −
1, z), BS(x, y − 1, z − 1), BS(x− 1, y, z −
1), BS(x− 1, y − 1, z − 1)) + 1 ;
/* BS(x,y,z) is the dimension size of the
maximum cube whose bottom right rear
corner is the unit block with index
(x,y,z) in the original data */

7 maxSide = max(maxSide, BS(x, y, z))
8 end
9 end

10 end
11 for each unit block b(x, y, z) do
12 if BS(x, y, z) ≥ 1 then
13 size = BS(x, y, z)

Dsize ← S((x− size : x) ∗ blkSize, (y − size :
y) ∗ blkSize, (z− size : z) ∗ blkSize) ; /* put the
sub-block to the according to 4D array */

14 b(x− size : x, y − size : y, z − size : z)← empty
BS(x− size : x, y − size : y, z − size : z) = 0
BS = updateBs(BS, x, y, z, maxSide)

15 end
16 end
17 return Dn

minimum value among its three neighboring blocks (i.e., upper
block, left block, and upper-left block). In other words, we have
BS[i][j] = 1+min(BS[i][j−1], BS[i−1][j], BS[i−1][j−1])
for the 2D case. For example, BS1[2][1] is 2 because all its
upper-left neighbors are 1 (as shown in Figure 8). However,
both BS1[1][1] and BS2[1][2] can only reach 1 because one of
their neighbors is set to 0, having no chance to form a sub-block
with the size of 2. Then, for step 3, we perform extraction based
on the BS. For instance, as illustrated in Figure 8, according to
BS1[2][1], we extract a 2-by-2 sub-block, B0, with its bottom
right corner at BS1[2][1]. Moreover, as mentioned in step (4),
we need to update BS after each extraction. Specifically, for
each sub-block we extract, we have to set its corresponding
values in BS to zeros. For instance, as shown in Figure 8,
after we extract a 2-by-2 sub-block B0 at BS1[2][1], we need
to set BS2[1][0], BS2[1][1], BS2[2][0], and BS2[2][1] to zeros.
In addition, we also need to recalculate a part of BS (line 17 in
Algorithm 2) because the extraction could influence other BS
values. For example, we need to recalculate BS2[1][2] (marked
in bold orange) after extracting B0. Note that this update is a

(a) NaST(CR=245, PSNR=77.5dB) (b) OpST(CR=248, PSNR=78.0dB)
Fig. 9: Visual comparison (one slice) of compression errors of two approaches
using SZ based on Nyx’s “baryon density” field (i.e., z10’s fine level, 23%
density). Brighter means higher compression error. The error bound is the
relative error bound of 7.2× 10−4.

partial update as the BS values to be updated will be bounded
by maxSide which is the dimension size of the largest cube in
the dataset (line 7).

Similar to NaST, in decompression, we will put the sub-
blocks back to reconstruct the data based on the saved coordi-
nates. Note that after our optimization, each sub-block size will
be relatively large (e.g., 963 vs the original data size of 5123),
the overhead of saving the coordinates of all the sub-blocks will
be negligible (e.g., 0.1%).

Finally, we show a visual comparison of the compression
quality between NaST and OpST in Figure 9. Note that both
use SZ with the same error bound. Brighter means more errors.
We can observe that compared to the NaST method, OpST can
significantly reduce the overall compression error, especially
for the data points on the boundary. It is worth noting that
even with a lower error, our OpST can still provide a higher
compression ratio than NaST. This is because our proposed
optimization will generate larger sub-blocks, which provide
more information for prediction-based lossy compressors such
as SZ to achieve better rate-distortion. A detailed evaluation
will be shown in Section IV.

C. Adaptive k-D Tree for Medium-density Data

The OpST approach proposed for low-density data, however,
has a high computation overhead, especially when the data is
relatively dense. This is because, on one hand, OpST needs to
update BS based on maxSide for each extraction of a sub-block,
while the larger the maxSide, the more values in BS that need
to be updated; on the other hand, maxSide is the dimension size
of the largest non-empty cube in the dataset, which is highly
related to the density of the dataset. Thus, the time complexity
of OpST can be expressed as O(N2 · d), where N is the
unit block number and d is the density. Note that here density
describes how dense the data is. For example, the density of
77% means that 23% of the data is empty. Clearly, when the
density of an AMR level is relatively high, using OpST will be
relatively time-consuming.
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Fig. 10: 2D example of adaptive k-D tree. Sub-block will be adaptively split to
effectively remove empty regions and get bigger full sub-blocks.

Algorithm 3: Dynamic k-D Tree

1
Input: data block d, counts information
Output: k-d tree

2 node.count ← counts information;
3 if d is empty or d is full then
4 continue ; /* stop splitting */
5 else
6 if max(x,y,z)/min(x,y,z) > 2 and pre-split is not over then
7 split from the max dimension to get d1, d2;
8 node.left = AKDTree (d1);
9 node.right = AKDTree (d2);

10 else
11 if d is a cube then
12 split d equally into 8 oct-blocks:

s1, · · · , s8;
13 get the counts c1, ...c8 for s1, · · · , s8;
14 find the maxDiff partition d1,d2;
15 node.left = AKDTree (d1, four ci of d1);
16 node.right = AKDTree (d2, four ci of d2);
17 else if d is a flat cuboid then
18 get the counts c1, · · · , c4 from counts

information;
19 find the maxDiff partition d1, d2;
20 node.left = AKDTree (d1, two ci of d1);
21 node.right = AKDTree (d2, two ci of d2);
22 else if d is a slim cuboid then
23 get the counts c1, c2 from counts

information;
24 split d along the largest dimension to get

d1,d2;
25 node.left = AKDTree (d1, c1);
26 node.right = AKDTree (d2, c2);
27 end
28 end
29 return node;

To address the above high overhead issue of OpST, we
propose an adaptive k-d tree, called AKDTree, to remove
empty regions and extract sub-blocks (containing multiple unit
blocks). AKDTree has a lower time complexity of O( 13N ·
logN) (will be discussed later). Figure 10 shows a simple 2D
example. Specifically, (1) we partition the data into small unit
blocks. (2) We use a tree to hierarchically represent the whole
data. Each node in the tree is associated with a sub-block of the
data. Moreover, each node stores the number of non-empty unit
blocks in the sub-block associated with the node. (3) For each
node, we split its associated sub-block from the middle along

one dimension to form two sub-blocks for its two children.
Note that while keeping the 3D feature of data, we select one
dimension that can maximize the difference of the numbers of
non-empty unit blocks of the two children (will be discussed in
the next two paragraphs). (4) We keep splitting a node until it
has no empty unit block or itself is empty. (5) Once finishing the
construction of the tree, we collect all the leaf nodes and send
them to the compressor. Note that a non-empty leaf node does
not have any empty unit block; otherwise, it will keep splitting.
Thus, a leaf node must be an empty or full node, as shown in
Figure 10. More detail is described in Algorithm 1.

As mentioned in step (3), We are distributing the non-empty
unit blocks unevenly to two children for each node. This is
done to maximize the number of leaf nodes with large sub-
block sizes. Large data blocks contain more spatial information,
which can enhance compression. If we keep splitting sub-
blocks in a fixed way, for instance, first split along the x-axis,
second split along the y-axis, third split along the x-axis, fourth
split along the y-axis, and so on, we will get a 2-by-2 sub-block
for the node n[2][2] as shown in the dashed box, while its largest
possible sub-block could be 4 by 2 as shown in Figure 10.

Fig. 11: Example of adaptive splitting, different shapes will have a different
number of choices for splitting.

To select one of the dimensions to unevenly distribute its
non-empty unit blocks to the two children, we now present our
dynamic splitting approach.

To maintain the high-dimensional characteristics of the
dataset, it’s essential to prioritize splitting along the largest di-
mension, especially if it is significantly greater than the others.
For instance, with a dataset sized 8 × 8 × 64, it’s preferable
to split along the z-axis rather than the x or y axes. Splitting
along the x or y would risk flattening a 3D dataset down to 2D.
Consequently, our initial approach is to divide the dataset along
the dominant dimension until:

max(x, y, z)/min(x, y, z) < 2 (1)

Then, we categorize nodes into three different types: “cube”
nodes, “flat” nodes, and “slim” nodes, whose dimension ratios
are x:y:z, 2x:2y:z (or 2x:y:2z or x:2y:2z), 2x:y:z (or x:y:2z or
x:2y:z), respectively. Here, x, y, and z represent the dimensions
of the data block after pre-split.

First of all, for the cube node d, we first divide it into eight
oct-blocks, i.e., s1, s2, · · · , s8 (as shown in Figure 11), each
sized x

2 ×
y
2 ×

z
2 . x, y, and z are the dimension sizes of the block

after pre-split. Then, we can get the counts of non-empty unit
blocks of the eight oct-blocks, i.e., c1, c2, · · · , c8. After that,
we will decide along which dimension to split the cube node d
based on the counts. Specifically, we can calculate the following



8

three differences:

diffx = |c1 + c3 + c5 + c7 − c2 − c4 − c6 − c8|,
diffy = |c1 + c2 + c5 + c6 − c3 − c4 − c7 − c8|,
diffz = |c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8|.

Finally, we compare these three values and choose the dimen-
sion with the maximum difference to split. For example, if the
maximum difference is diffz , we will split d along the z-axis
(i.e., the pink 2D plane shown in Figure 11) and get two flat
nodes d1 and d2. For the flat nodes such as d1, we can reuse c1,
· · · , c4 to decide whether to split d1 along the x-axis or y-axis by
choosing the larger one among the following two differences.

diffx = |c1 + c3 − c2 − c4|, diffy = |c1 + c2 − c3 − c4|.

For the slim nodes such as d11, we simply split it along the
x-axis to get two cube nodes s1 and s2. This process (i.e., cube
nodes→flat nodes→slim nodes) in step (3) will be looped until
the node becomes a leaf node (empty or full).

Note that based on the above description, the counting pro-
cess is required for every three nodes in each three paths (i.e.,
only for the “cube” nodes). Thanks to this dynamic splitting
approach, we can lower the time complexity of the AKDTree
algorithm to O

(
1
3 · N · logN

)
, where N is the number of

unit blocks while extracting as many relatively large sub-blocks
without empty unit block as possible.

In addition, after the dynamic splitting, we will have a series
of sub-blocks with the same size but in different directions (e.g.,
2x:2y:z, 2x:y:2z, x:2y:2z). We will align the sub-blocks with
the same size based on their splitting dimensions (instead of
in-memory transposing them), merge them into an array, and
compress multiple merged arrays together.

D. Shared Huffman encoding

As mentioned in Section I, III-C, and III-B, the OpST and
AKDtree methods collect and linearize the data blocks with the
same shape into a 4D array and send it to SZ. However, as high-
lighted in section III-B, these blocks may not be contiguous in
the original dataset. This leads to a lack of locality/smoothness
at the boundaries between non-neighbored data blocks, which
can still compromise prediction accuracy. This adverse effect
is particularly pronounced for SZ‘s Lor/Reg algorithm. As it
is a local prediction algorithm that depends solely on local
data, its performance plummets at block boundaries where local
smoothness is absent.

A potential solution could be compressing each data block
individually using SZ. However, this approach would result in
low Huffman encoding efficiency because the entire dataset
would be divided into many small blocks, requiring SZ to build
a separate Huffman tree for each of these small blocks. In other
words, the original SZ method either requires predicting and
encoding small blocks together (by forcing them merged into
4D arrays), leading to low prediction accuracy, or predicting
and encoding each small block separately, which results in
high Huffman encoding overhead. Furthermore, even if the data
blocks with the same shape can be compressed together, the
data blocks with different shapes still need to be compressed

Algorithm 4: SZ compression with SHE

Input: multiple data block D1...n

Output: compressed data S
1 quantCode Q, regreCoeff R, compressed data S;
2 for each data block Di do
3 quantCode block qi, regreCoeff block ri;
4 qi, ri = SZ.compress(Di);
5 Q.append(qi);
6 R.append(ri);
7 end
8 S ← HuffmanEncode(Q);
9 S ← HuffmanEncode(R); /* end compression */

10 return S;

separately, resulting in low Huffman encoding performance and
a high time cost of launching SZ multiple times.

To this end, for OpST and AKDtree, we propose a shared
Huffman encoding technique to predict data blocks separately
while encoding them together using a single shared Huffman
tree. The detail is shown in Algorithm 4. Each data block is
first predicted and quantized separately. Then, the quantization
codes and regression coefficients of each data block are aggre-
gated to build a shared Huffman tree and encoded at one time.
This approach can significantly improve the prediction perfor-
mance of SZ’s Lor/Reg prediction without introducing high
time overhead to the encoding of SZ. As shown in Figure 15,
compared to the original AKDtree, AKDtree with SHE can
significantly reduce the overall compression error, especially
for the data located at the boundary of data blocks, leading to
significant PSNR improvement, as shown in Figure 16. Further-
more, the use of SHE reduces the number of Huffman trees
needed for the data (since we do not need separate Huffman
trees for different block shapes), thereby improving encoding
efficiency and compression ratio.

Note that SZ’s interpolation does not benefit from SHE.
Unlike Lor/Reg that uses only neighboring data for predictions,
Interp also considers global points from the dataset. How-
ever, with SHE, each small data block produced by OpST or
AKDTree is predicted independently. This means Interp loses
all global spatial information. In contrast, without SHE, the
original OpST and AKDTree methods linearize the data blocks
into a large 4D array, preserving more global spatial informa-
tion for improved prediction. Thus, we exclusively apply the
SHE approach to the Lor/Reg predictor.

E. Hybrid Compression Strategy

In this section, we propose a solution to adaptively choose
the best-fit compression strategy for both Lor/Reg (with SLE)
and Interp algorithms.

For Lor/Reg (with SLE), we will choose from our proposed
OpST with SHE (OpST+), AKDTree with SHE (AKDTree+),
and GSP based on the data characteristics (i.e., data density).
According to Section III-B and III-C, OpST+ is more suitable
for sparse (i.e., low-density) data, while AKDTree+ is designed
to address the high time overhead of OpST+ when the density
of data increases. Thus, there should be a data-density threshold
to determine when to use OpST+ or AKDTree+.

To decide the threshold T0 for switching between OpST+ and
AKDTree+, we perform a series of experiments using Lor/Reg
predictor, as shown in Figure 12. The figure shows that OpST+
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(a) d = 23 (b) d = 42 (c) d = 58

(d) d = 63 (e) d = 77 (f) d = 99
Fig. 12: Compression performance comparison of GSP, OpST+, and AKDTree+ on 6 datasets with different densities using Lor/Reg algorithm.

(a) d = 23 (b) d = 42 (c) d = 63

(d) d = 77 (e) d = 85 (f) d = 99
Fig. 13: Compression performance comparison of GSP, OpST, and AKDTree on 6 datasets with different densities using Interp algorithm.

Fig. 14: Time overhead comparison of OpST and AKDTree on different
datasets with different densities.

and AKDTree+ have almost identical compression performance
in terms of bit-rate and PSNR on all four datasets/levels
(from different timesteps) with different densities. Moreover,
Figure 14 shows the time costs of OpST+ and AKDTree+
(excluding compression). The figure demonstrates that the time
of AKDTree+ is relatively stable, while the time of OpST+
increases linearly with the increase of data density. Overall,
the only criterion for selecting OpST+ or AKDTree+ is the
time cost rather than the compression performance. This is
consistent with our previous design aim, that is, AKDTree is
mainly designed to address the high time overhead issue of
OpST+. Since OpST+ and AKDTree+ have a similar speed
when the density is around 50%, we use T0 = 50 for choosing
OpST+ or AKDTree+.

According to Section III-A, GSP is designed to effectively
handle the AMR level with high data density to prevent the

(a) AKDtree
(CR=222, PSNR=78.5dB)

(b) AKDtree + SHE
(CR=231, PSNR=79.6dB)

Fig. 15: Visual comparison (one slice) of compression errors of two approaches
using SZ’s Lor/Reg prediction on Nyx’s “baryon density” field (i.e., z10’s fine
level, 23% density). Brighter means higher compression error. The error bound
is the relative error bound of 4.8× 10−4.

negative impact of data partitioning without the use of SHE.
In contrast, the data partition methods such as AKDTree re-
quire small blocks to be compressed together without SHE,
which can significantly decrease prediction accuracy, as shown
in Section III-D. However, the negative impact on prediction
accuracy caused by the partition can be eliminated by using
SHE to compress each small block produced by the partition,
which incurs little overhead, while GSP introduces significant
overhead to the data size. As shown in Figure 12, OpST+ and
AKDTree+ outperform GSP across all the densities. As a result,
the improved partition strategies using SHE can be a viable
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Fig. 16: Comparison of original AKDTree and AKDTree with SHE on Nyx’s
“baryon density” field (i.e., z10’s fine level, 23% density).

alternative to GSP for all levels.
In summary, for Lor/Reg (with SLE), our proposed hybrid

compression approach is described as follows.
1) When the density is smaller than T0 = 50%, we use

OpST+ to remove empty regions and then compress;
2) When the density is larger than T0 = 50%, we use

AKDTree+ to remove empty regions and then compress.
For the Interp algorithm, we will select from our proposed

methods: OpST, AKDTree, and GSP, based on the data density.
It is worth noting that we do not employ the SHE approach
for the Interp algorithm due to its negligible improvement, as
discussed at the end of Section III-D.

To determine the appropriate threshold T1 for transitioning
between OpST and AKDTree, we conducted a series of exper-
iments, as depicted in Figure 13. These figures reveal that both
OpST and AKDTree also deliver nearly equivalent compression
performance on the Interp algorithm across all six AMR levels,
each from different timesteps and with varied densities. Based
on these findings, we recommend setting T1 = 50% when
selecting between OpST and AKDTree, consistent with our
approach for Lor/Reg, aiming to enhance processing speed.

Next, to determine the threshold T2 for switching between
AKDTree and GSP, we also evaluate them on different datasets
with different densities. As shown in Figure 13, when the den-
sity is relatively low, AKDTree outperforms GSP with respect
to both bit-rate and PSNR; when the density gets higher and
higher, GSP gradually outperforms AKDTree. We also observe
that AKDTree and GSP have similar compression performance
when the density is around 85%. Thus, we use T2 = 85% to
choose AKDTree or GSP.

Therefore, our proposed hybrid compression approach for
the Interp algorithm is:

1) When the density is smaller than T1, we will use OpST to
remove empty regions before compression;

2) When the density is between T1 and T2, we will use
AKDTree to remove empty regions before compression;

3) When the density is larger T2, we will use GSP to pad
appropriate values before compression.

It is evident that, compared to the Lor/Reg with SHE, GSP
once again proves beneficial for Interp. The core reason is that,
for Lor/Reg, we can use SHE to fully mitigate the impact of
partitioning as just mentioned. Interp’s global spatial informa-
tion/locality inevitably gets disrupted by partitioning. GSP can
thus be applied to the AMR level with high data density to
counteract the effects of partitioning, while also minimizing
data size overhead.

F. Discussion on Generality and Distribution

Generality of our design. TAC and TAC+ (including the
pre-process strategies and SHE on SZ’s Lor/Reg) are designed
to handle AMR data level-wise where the data has an irregular
distribution, such as many empty/zero regions. TAC/TAC+
can also be employed for sparse non-AMR data compression.
However, for sparse non-AMR data with very high density
(e.g., 99.9% of the data is non-zero), our TAC/TAC+, designed
for irregular data, might not offer many advantages, as this
data closely resembles ordinary non-sparse data without empty
regions. On the other hand, TAC/TAC+ is more apt for AMR
data because AMR data has multi-resolution levels, and the
density sum from all levels equals one. This means there is at
most one super-dense level where the TAC/TAC+ may be less
effective.

Furthermore, the SHE approach can be utilized to enhance
the compression ratio while maintaining prediction perfor-
mance, especially when compressing numerous small-sized
datasets collectively. Take, for instance, the scenario of com-
pressing 10,000 2D images of 100 × 100. Compressing them
individually would result in a reduced overall compression ratio
(CR). Conversely, stacking them into a 3D block isn’t optimal
either, as it could compromise prediction accuracy due to the
unsmoothness between images.

Distributed scenario. "In a distributed environment, paral-
lelizing the GSP would be relatively straightforward because its
padding approach is primarily local. The only minor challenge
arises when padding values must be computed from other
processes. This necessitates a boundary value exchange, similar
to the Stencil problem.

However, OpST and AKDTree would face more significant
challenges in parallelization due to their global nature. Merely
using an embarrassingly parallel approach for these algorithms
would yield smaller data blocks and lower spatial locality
compared to the serial version. It’s clear that communication is
needed for these algorithms to be more effective, but balancing
their ability to extract larger sub-blocks from the dataset with
the communication cost would be a challenge. Addressing this
challenge will be a primary goal in our future work.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Test data. Our evaluation primarily focuses on the AMReX
framework [?], especially the Nyx cosmology simulation [?],
the WarpX electromagnetic and electrostatic Particle-In-Cell
(PIC) simulation [?], and the IAMR [?], which solves the
incompressible Navier-Stokes equation.

Nyx, as shown in Figure 17, is a state-of-the-art, extreme-
scale cosmology code that leverages AMReX. It produces
six fields, which include baryon density, dark matter density,
temperature, and velocities (x, y, and z). We analyzed six
datasets produced by three real-world simulation runs, each
having different numbers of AMR levels, and simulating a 64
megaparsec (Mpc) region. For these datasets, Z represents the
redshift, i.e., the displacement of distant galaxies and celestial
objects, as presented in Tab I. Specifically: the first run com-
prises two levels of refinement, with a coarse level of 2563
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Fig. 17: Visualization of Nyx’s density field.

Fig. 18: Visualization of WarpX’s electric field (z-direction).

grids and a fine level of 5123 grids. We collected data from
three timesteps, where the finest level density ranges from 23%
to 63%. The second run has up to four refinement levels. It
began with a resolution of 1283 and refined to 10243. From
this run, we acquired data from two timesteps with the finest-
level resolutions of 5123 (three levels) and 10243 (four levels).
The density at the finest level ranged from 0.2% to 0.003%. The
third run featured three refinement levels with grid sizes of 1283

at the coarsest level, 2563 at the intermediate level, and 5123 at
the finest level. The density at the finest level is 0.90%.

WarpX, as shown in Figure 18, is a highly parallel, opti-
mized electromagnetic and electrostatic Particle-In-Cell (PIC)
simulation that incorporates AMReX. It is designed to run on
GPUs and multi-core CPUs and boasts load-balancing features.
WarpX has the capability to scale up to the capacities of
the world’s most advanced supercomputers. Notably, it was
awarded the 2022 ACM Gordon Bell Prize. We collected two
timesteps from WarpX, as detailed in Tab I. Each timestep
features two refinement levels, with dimensions of 128×128×
1024 and 256×256×2048. The density at the finest level varies
between 2% and 8.6%.

IAMR, as shown in Figure 19, is a highly parallel AMR code
to solve the variable-density incompressible Navier-Stokes
equations in either 2-D or 3-D. It also offers an embedded
boundary (cut cell) representation for intricate geometries. We
specifically executed the 3D Rayleigh-Taylor problem, which
simulates a heavy fluid atop a light fluid under gravity’s in-
fluence. We gathered data from two timesteps in IAMR. Each

Fig. 19: Visualization of IAMR’s density field.

TABLE I: Our tested AMR applications and datasets.
Dataset # Levels Grid Size of Each Level

(Fine to Coarse)
Density of Each Level

(Fine to Coarse)
Data Size

(Per timestep)
Nyx Run1_Z10 2 512, 256 23%, 77% 3.3 GB
Nyx Run1_Z5 2 512, 256 58%, 42% 6.4 GB
Nyx Run1_Z2 2 512, 256 63%, 37% 6.7 GB
Nyx Run2_T3 3 512, 256, 128 0.02%, 0.56%, 99.42% 169 MB
Nyx Run2_T4 4 1024, 512, 256, 128 3E-5, 0.02%, 2.2%, 97.7% 190 MB
Nyx Run3_Z1 3 512, 256, 128 0.90%, 14.70%, 84.40% 416 MB
WarpX_800 2 1282*1024; 2562*2048 8.6%,91.4% 2 GB
WarpX_1600 2 1282*1024; 2562*2048 2.0%, 98.0% 1.4 GB
IAMR_90 3 512, 256, 128 0.6%, 10.5%, 88.9% 336 MB
IAMR_150 3 512, 256, 128 14.8%, 30.9%, 54.3% 2 GB

timestep comprises three refinement levels, beginning with
dimensions of 128×128×128 for the coarsest level and refining
to 512× 512× 512 for the finest level. The density at the finest
level ranges from 0.6% to 14.8%.

Note that the density of the finest level describes how much
of the data in the dataset is at the highest resolution; a higher
density of the finest level means that more data is refined to
the highest resolution. Usually, the data density is gradually
increasing at the finest level, within a single run.

Evaluation platform and compressor. The test platform is
equipped with two 28-core Intel Xeon Gold 6238R processors
and 384 GB of memory. This work is based on two distinct
SZ compression algorithms, namely Lor/Reg, which employs
Lorenzo and linear regression predictors, and the Interp, which
utilizes the spline interpolation approach as discussed in Sec-
tion II-A. The Lor/Reg algorithm commences by partitioning
the entire input data into 6×6×6 blocks, followed by the
independent application of either Lorenzo predictor or high-
dimensional linear regression on each individual block. Con-
versely, the Interp algorithm conducts interpolation across all
three dimensions of the entire dataset.

A key distinction between Lor/Reg and Interp is that the
former is block-based whereas the latter is global. Specifically,
Lor/Reg algorithm divides data into blocks prior to compres-
sion, whereas the Interp algorithm applies global interpolation
across the entire dataset.

Comparison baselines. As outlined in Section II, we compare
against three baselines, either in 1D or 3D, and introduce two
of our solutions. Specifically, (1) the 1D baseline (naive): each
AMR level is compressed separately as a 1D array; (2) the 1D
baseline (zMesh) [?]: we refer readers to Section II for more
details about how the zMesh approach reorganize the AMR data
for 1D compression; and (3) the 3D baseline: Different AMR
levels are unified to the same resolution for 3D compression; (4)
our TAC: each AMR level is compressed using OpST (without
SHE), AKDTree (without SHE), and GSP based on the data
density. For more information, we refer readers to [?] for more
details. (5) our TAC+: each AMR level is compressed using
OpST+ or AKDTree+ based on the data density, with SHE
using Lor/Reg algorithm.

As mentioned in Section III-D, TAC+ is specifically paired
with Lor/Reg algorithm. This is because TAC+ is developed
to enhance the performance of Lor/Reg compression algorithm
using SHE for AMR data. On the other hand, TAC serves as
a pre-processing technique, making it compatible with both
Lor/Reg and Interp algorithms.

B. Evaluation Metrics
We will evaluate the compression performance based on the

following metrics: (1) compression ratio or bit-rate (generic),
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(a) Run1_Z10 (finest-level density = 23%)

(b) Run1_Z5 (finest-level density = 58%)

(c) Run1_Z2 (finest-level density = 63%)
Fig. 20: Rate-distortion comparison of our approaches (TAC and TAC+) and
baselines on the early time-step (Z10) to the late time-step (Z2) from Nyx run1
using Lor/Reg algorithm.

(2) distortion quality (generic), (3) compression throughput
(generic), (4) rate-distortion (generic), (5) power spectrum (cos-
mology specific), (6) Halo finder (cosmology specific).

Metric 1: To evaluate the size reduction as a result of the
compression, we use the compression ratio, defined as the
original data size divided by the compressed data size, or bit-
rate (bits/value), representing the amortized storage cost of each
value. For single/double floating-point data, the bit-rate is 32/64
bits per value before compression. The compression ratio and
bit-rate have a mathematical relationship as their multiplication
is 32/64 so that a lower bit rate means a higher ratio.

Metric 2: Distortion is another important metric used to
evaluate lossy compression quality. We use the peak signal-to-
noise ratio (PSNR) to measure the distortion quality.

PSNR = 20 · log10 (RX)− 10 · log10
(∑N

i=1 e
2
i /N

)
,

where ei is the difference between the original and decom-
pressed values for the point i, N is the number of points, and
RX is the value range of X . Higher PSNR means less error.

Metric 3: (De)compression throughputs are critical to im-
proving the I/O performance. We calculate the throughput
based on the original data size and (de)compression time.

Metric 4: Similar to prior work [?], [?], [?], [?], [?], [?],
[?], we plot the rate-distortion curve to compare the distortion
quality with the same bit-rate, for a fair comparison between
different compression approaches, taking into account diverse
compression algorithms.

Metric 5: Matter distribution in the Universe has evolved to
form astrophysical structures on different physical scales, from
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Fig. 21: Rate-distortion comparison of TAC and baselines on the Nyx run1
using Interp algorithm.

planets to larger structures such as superclusters and galaxy
filaments. The two-point correlation function ξ(r), which gives
the excess probability of finding a galaxy at a certain distance
r from another galaxy, statistically describes the amount of
the Universe at each physical scale. The Fourier transform of
ξ(r) is called the matter power spectrum P (k), where k is the
comoving wavenumber. The matter power spectrum describes
how much structure exists at each physical scale. We run
the power spectrum on the baryon density field by using a
cosmology analysis tool called Gimlet. We compare the power
spectrum p′(k) of decompressed data with the original p(k) and
accept a maximum relative error within 1% for all k < 10.

Metric 6: Halo finder aims to find the halos (over-densities)
in the dark matter distribution and output the positions, the
number of cells, and the mass for each halo it finds, respectively.
Specifically, the halo-finder algorithm [?] searches for the halos
from all the simulated data, with the following two criteria:
(1) the mass of a data point must be greater than a threshold
(e.g., 81.66× of the average mass of the whole dataset) to
become a halo cell candidate [?], [?], [?], and (2) there must
be enough halo cell candidates in a certain area to form a halo.
For decompressed data, some of the information (mass and cells
of halos) can be distorted from the original.

C. Evaluation on Rate-distortion

We first evaluate the rate-distortion of our proposed com-
pression approaches and compare them with the baselines on
different simulations and compression algorithms.

For Lor/Reg algorithm, as shown in Figure 20, 22 and 24,
our new approach with SHE, TAC+ (represented by the pink
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(a) Run2_T3 (finest-level density = 0.02%)

(b) Run2_T4 (finest-level density = 3E-5)

(c) Run3_Z1.5 (density for each level: 0.87%, 13.88%, 85.25% )
Fig. 22: Rate-distortion comparison of our approaches and baselines on differ-
ent time-steps from run2 and run3 using Lor/Reg algorithm.

curve) yields better performance than the original TAC (the
yellow curve) without SHE for all the datasets from Nyx and
IAMR. However, in WarpX, TAC+ does not surpass TAC, as
depicted in Figure 26. This can be attributed to the simpler
refinement structure of WarpX. Unlike Nyx and IAMR, which
refine hundreds of regions (as shown in Figure 4a), WarpX
refines only one large rectangular area. Consequently, the unit
block size in WarpX is four times larger than in Nyx and IAMR.
After the TAC+ partitioning process, this results in a substan-
tially reduced number of unit blocks. This reduction negates
the advantages of TAC+, which was specifically developed to
handle numerous small AMR data blocks efficiently.

Also, for the 1D baseline, our approaches including the
TAC+ and TAC outperform the 1D baseline across all the ten
datasets from the three simulations and all two compression
algorithms (i.e., Lor/Reg and Interp), as shown in Figure 20
to 27. Furthermore, the performance of our approach is more
stable (i.e., smoother curve) than the 1D baseline. We can
also find that zMesh is slightly worse than the 1D baseline on
our tested data as shown in Figure 20 and 21, which will be
explained in the next section.

For the 3D baseline, we observe that our solutions has much
better performance when the finest level has a relatively low
density or the decompressed data has a high PSNR for all the
datasets and compression algorithms, as shown in Figure 20
to 27. However, our approach cannot dominate the 3D baseline
as shown in Figure 20 and 21, when the following criteria are
satisfied: (1) the AMR data has only two levels of refinement,
(2) the finest level has a relatively high density, and (3) the
decompressed data has low PSNR/bitrate.
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Fig. 23: Rate-distortion comparison of TAC and baselines on Nyx run2 and
run3 using Interp algorithm.
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(b) IAMR-150
Fig. 24: Rate-distortion comparison of our approaches and baselines on differ-
ent time-steps from Rayleigh Taylor using Lor/Reg algorithm.

In the next section, we will discuss how the number of AMR
levels, the density of the finest level, and the bit-rate/PSNR of
decompressed data affect the performance of the 3D baseline
and TAC+ and TAC in detail.

D. Comparison with Baselines

On compression, zMesh is meant to improve the smoothness
of the patch-based AMR datasets by taking advantage of the
data redundancy between each AMR level (as described in the
introduction). Thus, zMesh cannot improve the smoothness if
there is no data redundancy in the tree-structured AMR datasets
(i.e., our tested datasets). A simple example is used to illustrate



14

25

45

65

85

0 1 2 3 4 5

PS
N
R

bit-rate

naive1D 3D TAC

(a) IAMR-90

25

45

65

85

0 1 2 3 4 5

PS
N
R

bit-rate

naive1D 3D TAC

(b) IAMR-150
Fig. 25: Rate-distortion comparison of TAC (top-left) and baselines on different
time-steps from Rayleigh Taylor using Interp algorithm.
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Fig. 26: Rate-distortion comparison of our approaches and baselines on differ-
ent time-steps from WarpX using Lor/Reg algorithm.

this in Figure 28b, where the finer-level data has higher values
because a grid will be refined only if its value is larger than a
certain threshold. For block-based AMR, when a grid needs to
be refined because of its high value, the value will still remain
in the level, resulting in a redundant value saved (i.e., the red
8). If one uses the original z-ordering to traverse the data level-
by-level (shown in Figure 28b), the reordered data will have
three significant value changes (i.e., from 2 to 8, from 8 to
1, and from 1 to 9). To solve this issue, zMesh traverses the
two AMR levels together based on the layout of the 2D array.
The reordered data are “1-2-8-9-8-7-8-1”, which only has two
significant value changes (from 2 to 8 and from 8 to 1). Thus,
zMesh can improve the smoothness of patch-based AMR data.

However, as shown in Figure 28a, for tree-structured AMR
data (without saving a redundant “8”), compared to the 1D
baseline that compresses each level separately, zMesh intro-
duces two significant data changes (i.e., from 2 to 9 and from
8 to 1) as it traverses between two AMR levels. This explains
why zMesh is slightly worse than the 1D baseline.

When considering the 3D baseline, we observe that it works
slightly better than TAC+ in the following circumstances: (1)
the AMR data has only two levels of refinement, (2) the finest
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Fig. 27: Rate-distortion comparison of TAC+ and baselines on different time-
steps from WarpX using Interp algorithm.

(a) Tree-based AMR data (b) Patch-based AMR data
Fig. 28: An example of how the 1D baseline, zMesh, and original z-order
reorder a simple 2D AMR data without and with redundancy. Orange: coarse
level, blue: fine level, red: redundant data.

level of the data has a relatively high density, and (3) the
decompressed data has a low PSNR/bit-rate.

We now explain each observation point individually. As
outlined in Section II-D, a primary drawback of the 3D baseline
is the redundant data produced by the up-sampling process.
This redundancy becomes even more pronounced for AMR data
with more than two refinement levels, especially when the finest
level of data is sparsely populated. Such extra data increases the
data size, leading to sub-optimal compression performance for
the 3D baseline (points 1 & 2).

Conversely, the 3D baseline yields superior data locality and
smoothness compared to TAC+ and TAC. This is because it
processes the entire dataset as a unified block, without seg-
menting it. Consequently, the 3D baseline exhibits enhanced
compressibility, resulting in a quicker bitrate reduction and
a slower reduction in PSNR as the error bound increases,
compared to TAC+ and TAC. As a result, the 3D baseline
performs better at a low bit-rate (point 3).

E. TAC/TAC+ for Different Compression Algorithms

Note that the Lor/Reg compression algorithm can use the
enhanced TAC+, resulting in improved compression perfor-
mance. Conversely, with the Interp, we did not use TAC+
because it cannot bring a performance advantage over TAC
as mentioned in Section III-D. The underlying reason for
this difference lies in the nature of the AMR data and the
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Lor/Reg algorithm. Both AMR data and Lor/Reg are block-
based, whereas Interp is global.

Specifically, a significant challenge in compressing high-
dimensional AMR data is the need for partitioning, which can
compromise spatial information and data smoothness. Given
that Lor/Reg also segments data into blocks, it aligns naturally
with the partitioning approach inherent to AMR data. By lever-
aging our pre-process and optimization technique, Lor/Reg
combined with TAC+ using SLE can effectively address the
issues of local data smoothness and smoothness caused by
partitioning, making it especially compatible with AMR data.
In contrast, the Interp method implements a global interpola-
tion approach on partitioned AMR data. Due to partitioning,
small-sized blocks inevitably disrupt global spatial informa-
tion for global interpolation. Although we can use the OpST
and AKDTree to obtain larger partitioned blocks and improve
spatial locality, we still cannot achieve perfect compatibility
between interpolation prediction and AMR data.

F. Post-analysis Quality with Adaptive Error Bound

TABLE II: Halo finder analysis with different methods.
CR Avg Rel Mass Diff Avg Rel Cells Diff

3D baseline 188.7 2.7E-04 2.2E-03
TAC+ (1:1) 189.1 2.2E-04 2.1E-03
TAC+ (2:1) 192.5 1.1E-04 9.0E-04

When factoring level-wise compression, our approach can
apply different error bounds to different AMR levels based on
(1) the post-analysis metrics, (2) the up-sampling rates of coarse
levels, and (3) the rate-distortion trade-off between different
AMR levels. We now evaluate our approach with the two
cosmology-specific post-analysis metrics (i.e., power spectrum
and halo finder) to demonstrate the benefit of the adaptive error
bound method. We chose the dataset run1-Z2 for evaluation
because TAC+ has a similar performance as the 3D baseline
on this dataset.

Figure 29 shows the motivation of performing rate-distortion
trade-off between different AMR levels. As the error bounds for
the fine and coarse levels increase, their bit rates will converge
to a similar value. This means that when the error bound is
relatively large, the reduction in data size will be insignificant
compared to the compression error increment (i.e., the slopes of
both curves are small). Thus, we conclude that when the error
is large, trading data quality for size reduction is not worth.

Fig. 29: Bit-rates with different error bounds using SZ lossy compression for
fine and coarse levels on Run1_Z2 dataset.

Power Spectrum Figure 30a shows that under the (almost)
same compression ratio, TAC+ (with the uniform error bound)
has a better power-spectrum error compared to the 3D baseline.

(a) Power spectrum error under 1% limit

(b) Power spectrum error under 0.01% limit
Fig. 30: Power spectrum error (in relative) of the 3D baseline and TAC+
(uniform error bound) and TAC+ (adaptive error bound) on baryon density
field on run1-Z2. The red and blue dashed line is the 1% and 0.01% limit of
acceptable power spectrum error.

Also note that TAC+ yields nearly lossless power-spectrum
distortion (less than 0.01%) under the compression ratio of
42×, as shown in Figure 30a’s gray curve.

Now, let us follow the three steps mentioned at the beginning
of this section to adjust the error bound for each AMR level.
First, the post-analysis metric–power spectrum—needs to be
run on the uniform-resolution data and focuses on the global
quality of data. Thus, the ideal error-bound configuration/ratio
for the fine and coarse levels on the uniform-resolution data
would be 1:1.

as mentioned before, the coarse level of the AMR dataset
needs to be up-sampled to uniform the resolution. As a result,
the compression error of the coarse level will be up-sampled as
well, resulting in more error in the post-analysis. Thus, we then
need to give the coarse level a smaller error bound based on the
up-sample rate. Here the up-sample rate for Z2’s coarse level is
23, leading to an ideal error-bound ratio of the fine and coarse
levels changed to 8:1.

Finally, this 8:1 ratio needs to be adjusted based on the
rate-distortion trade-off as mentioned before. As shown in
Figure 29, when using the error-bound ratio of 8:1 (e.g., 4E+9
for the fine level and 5E+8 for the coarse level), the error bound
of the fine level is too large, resulting in an ineffective rate-
distortion trade-off. Thus, we can balance two levels by increas-
ing the error bound for the coarse level (to gain compression
ratio) and decreasing the error bound for the fine level (to add
compression error), which can achieve an overall rate-distortion
benefit. Based on our experiments, we adjust the error-bound
ratio from 8:1 to 3:1, As shown in Figure 30b, TAC+ with
adaptive error bound can significantly improve the compression
ratio compared with uniform error bound under similar power
spectrum error.

Halo finer We evaluate the mass change, and the number
of cells change for the three largest halos identified using the
3D baseline, TAC+ (with uniform error bound), and TAC+
(with adaptive error bound), as shown in Table II. We can see
that TAC+ with uniform error bound produces better halo-finer
analysis quality than the 3D baseline.

Similar to the error-bound configuration analysis done for
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TABLE III: Overall compression/decompression throughputs (MB/s) of different approaches with different absolute error bounds on Nyx.
Comp
Algo EB_abs Run1_Z10 Run1_Z2 Run2_T4 Run3_Z1

1D 3D TAC TAC+ 1D 3D TAC TAC+ 1D 3D TAC TAC+ 1D 3D TAC TAC+

Lor/Reg
1E+08 51 37 79 77 51 79 85 84 49 0.32 24 24 49 5.6 63 63
1E+09 81 48 94 93 55 92 103 97 53 0.39 26 26 53 6.5 78 75
1E+10 89 53 107 102 58 100 111 104 84 0.41 28 27 57 7.1 91 84

Interp
1E+08 74 35 80 \ 73 73 90 \ 67 0.27 24 \ 68 4.9 70 \
1E+09 82 42 91 \ 82 81 95 \ 77 0.32 25 \ 78 5.8 77 \
1E+10 90 46 97 \ 87 85 104 \ 84 0.33 26 \ 87 6.3 87 \

TABLE IV: Overall compression/decompression throughputs (MB/s) of differ-
ent approaches with different absolute error bounds on IAMR.

Comp
Algo EB_abs IAMR_90 IAMR_150

1D 3D TAC TAC+ 1D 3D TAC TAC+

Lor/Reg
2E+03 50 5.0 67 66 51 28 76 78
2E+04 52 5.2 73 71 50 30 85 86
2E+05 54 5.6 79 78 53 31 94 94

Interp
2E+03 72 4.6 68 \ 68 25 81 \
2E+04 80 4.8 75 \ 78 27 92 \
2E+05 86 5.1 80 \ 81 28 96 \

TABLE V: Overall compression/decompression throughput (MB/s) of different
approaches with different absolute error bounds on WarpX.

Comp
Algo EB_abs WarpX_800 WarpX_1600

1D 3D TAC TAC+ 1D 3D TAC TAC+

Lor/Reg
1E+06 49 15 97 85 47 8.9 102 89
1E+07 52 18 107 92 50 11 126 103
1E+08 52 19 115 98 53 14 159 121

Interp
1E+06 73 14 128 \ 68 8.7 123 \
1E+07 79 16 140 \ 75 11 140 \
1E+08 83 17 147 \ 79 12 159 \

the power spectrum, let us now adjust the error-bound ratio
between the fine and coarse levels for halo finder. The halo-
finer analysis also requires uniform-resolution data as input.
However, different from the power-spectrum analysis, the halo-
finder analysis focuses more on high-value points at the fine
level, since only high-value data points qualify as halo can-
didates, as described in Section IV-B. Note that this does not
mean we can directly discard the coarse-level data with small
values as they still contribute to the average value of the dataset,
which is also an important parameter for the halo finder [?].
Therefore, we set the ideal error-bound ratio to 1:2 (i.e., fine
level vs coarse level) for the uniform-resolution data based
on our massive experiments. After that, considering the up-
sampling rate of 23, the error-bounded ratio is changed to 4:1.
Finally, we adjust the ratio to 2:1 based on the rate-distortion
trade-off. Table II shows that TAC+ with adaptive error bound
obtains the minimal differences of the mass and cell numbers.

G. Evaluation on Time Overhead

We evaluate the overall throughput (including pre-process
and (de)compression) on the datasets with different error
bounds. As shown in Table III, IV, and V, compared to the
3D baseline, the throughput of TAC+ is up to 2× higher on
the Nyx Run1 datasets, 75× higher on the Nyx Run2 dataset,
11.8× higher on the Nyx Run1 dataset, 10× higher on IAMR
dataset, and 14× higher on WarpX dataset. This is because
the WarpX, IAMR, Nyx Run2, and Nyx Run3 datasets have a
lower density than the Run1 datasets at the finest level, resulting
in a higher overhead of redundant data for the 3D baseline,
which is consistent with our discussion in Section IV-D. We
note that TAC+ and performs better than the 1D baseline on all
the tested datasets except the Nyx Run2_T4 datasets, due to its
long data-partition time (relative to the total time) on the small-
sized datasets. Also, in the three tables, the symbol “\” denotes
that TAC+ is specifically paired with the Lor/Reg algorithm as
mentioned in Section IV-A.

The overall higher throughput of both TAC+ and TAC can
be attributed to the high efficiency of the three pre-process
strategies. Firstly, the GSP pre-process operates in linear time,
as only a subset of the boundary data needs to be processed
once to calculate the padding value. Additionally, padding is
restricted to specific empty regions and is executed just once.
Next, the time complexities for OpSt(+) and AKDTree(+) are
O(N2 · d) and O( 13N · logN) respectively, where N represent
the unit block number and d indicates the density. Given that
each unit block comprises a substantial number of data points,
both OpSt(+) and AKDTree(+) exhibit high efficiency. More-
over, by employing our hybrid compression strategy detailed
in Section III-E, we can further enhance the performance of
TAC(+) by opting for the faster algorithm between OpSt(+)
and AKDTree(+).

In addition, TAC+ has almost the same throughput as TAC.
The very slight decrease is because TAC+ compresses the
data in a more fine-grained manner. We exclude zMesh in this
evaluation as it is theoretically slower than the 1D baseline
due to the extra z-ordering and provides worse rate-distortion
according to our evaluation.

V. CONCLUSION AND FUTURE WORK

In conclusion, this paper leverages 3D compression for AMR
data on a systemic level. We propose three pre-process strate-
gies that can adapt based on the density of each AMR level. Our
approach improves the compression ratio compared to the state-
of-the-art approach by up to 4.9× under the same data quality
loss. With our level-wised compression approach, we are able
to tune the error-bound ratio of fine and coarse levels to be
3:1 and 2:1 for better power-spectrum and halo-finder analyses,
respectively, under the same compression ratio. In future work,
we will apply TAC+ to more AMR simulations and improve
its throughput on multi-core CPUs using OpenMP and GPUs
using CUDA.

ACKNOWLEDGEMENT

This work has been authored by employees of Triad National
Security, LLC, which operates Los Alamos National Laboratory un-
der Contract No. 89233218CNA000001 with the U.S. Department
of Energy (DOE) and the National Nuclear Security Administration
(NNSA). This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort
of the DOE SC and NNSA. This work was also supported by NSF
awards 2303064, 2247080, 2311876, and 2312673. This research
used resources of the National Energy Research Scientific Computing
Center, a DOE SC User Facility located at Lawrence Berkeley National
Laboratory, operated under Contract No. DE-AC02-05CH11231. We
would like to thank Dr. Zarija Lukić and Dr. Jean Sexton from the NYX
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