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ABSTRACT

Soft errors are prevalent in modern High-Performance Computing
(HPC) systems, resulting in silent data corruptions (SDCs), compro-
mising system reliability. Instruction duplication is a widely used
software-based protection technique against SDCs. Existing instruc-
tion duplication techniques are mostly implemented at LLVM level
and may suffer from low SDC coverage at assembly level. In this pa-
per, we evaluate instruction duplication at both LLVM and assembly
levels. Our study shows that existing instruction duplication tech-
niques have protection deficiency at assembly level and are usually
over-optimistic in the protection. We investigate the root-causes
of the protection deficiency and propose a mitigation technique,
Flowery, to solve the problem. Our evaluation shows that Flowery
can effectively protect programs from SDCs evaluated at assembly
level.

CCS CONCEPTS

• Computer systems → High-performance computing; • De-
pendable and fault-tolerant systems and networks;
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1 INTRODUCTION

The prevalence of transient hardware faults, also known as soft
errors, is expected to rise in high-performance computing (HPC)
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systems, owing to factors such as system scaling, technology ad-
vance, and voltage reduction [22, 23, 28]. These faults may affect
program instructions being executed in the systems, and corrupt
program output. We call this silent data corruption or SDC. Tradi-
tionally, HPC systems were protected using hardware-based solu-
tions such as hardware redundancy and circuit hardening methods.
However, they impose significant overheads in performance and
energy consumption, thereby are challenging to deploy in practice.

To overcome these challenges, researchers have proposed soft-
ware solutions. Prior research has demonstrated that a small per-
centage of instructions are responsible for almost all the SDCs in a
program [11, 12, 18]. In order to achieve low-overhead protection
against SDCs, developers have proposed instruction duplication
techniques to selectively protect vulnerable instructions with pri-
ority. The technique has been demonstrated to be efficient, and
widely applied in HPC to reduce SDC rate [12, 21, 24].

The instruction duplication technique makes a copy of origi-
nal instruction sequence and compares the computation results of
both. If the computations mismatch between the two copies, errors
are detected. The entire technique can be implemented using com-
piler techniques. A vast number of existing instruction duplication
techniques are implemented at LLVM intermediate representation
(IR) level [2, 10–12, 15, 25]. This is because, at IR level, it allows
both error sensitivity analysis (e.g., fault injection and characteri-
zation, etc) and handy code transformation as per analysis result
using rich LLVM compiler libraries at compile time before the de-
ployment of the program [2, 11, 12, 15]. In contrast, instruction
duplication technique implemented at lower level such as assembly
instructions has limited means for a comprehensive analysis and
flexible transformation. For instance, Intel PIN [19], by far the most
commonly sought assembly-level tool comes with only dynamic
instrumentation at program runtime, restricting the possibility to
implement a program-specific selective protection scheme which
can be practically done only at compile time.

While LLVM is commonly used in implementing selective in-
struction duplication, the fault coverage at assembly instruction
level is unknown given the faults essentially occur at lower layer
and it is assembly instructions that read the faults at runtime. Prior
studies evaluate the technique at only LLVM level and claim based
on that [10–12, 18, 25], thereby it is unclear whether LLVM-based
instruction duplication techniques are effective and by how much
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if faults are injected from assembly instruction level – we aim to
answer this research question in this paper.

In this work, we quantitatively evaluate the LLVM-based in-
struction duplication technique by injecting faults at lower level,
assembly instructions of programs. We examine the measured ef-
fectiveness of the protection and compare it end-to-end with those
claimed in prior work. We have two main findings: (1) There is
non-negligible gap between the effectiveness and efficiency of the
protection between the evaluation at LLVM level and assembly level.
The results are particularly application-specific. In addition, the
fault coverage often falls short at assembly instruction level com-
pared with LLVM level evaluation, indicating an over-optimistic
estimate of protection in the existing studies; (2) The good news is
that the root-causes leading to the shortfalls in the protection fall
into strong identifiable patterns which can be characterized using
compiler program analysis techniques. With the knowledge of the
root-causes, we propose Flowery, a set of compiler patches that
transparently harden the cross-layer deficiencies in the existing
LLVM-based instruction duplication techniques, closing the gap.
To the best of our knowledge, we are the first ones who quantify and
characterize the cross-layer protection deficiency of instruction du-
plication, investigate the root-causes of it, and propose solutions to
mitigate the deficiency.

Our main results are as follows:

• We assess the protection effectiveness of existing LLVM-
based instruction duplication in 16 benchmarks. We mea-
sure the SDC coverage at both LLVM instruction level and
assembly instruction level, then compare their differences.
Our results show a considerable disparity between the two
level results, implying that instruction duplication technique
often fails to strike a satisfactory balance protection between
LLVM and assembly levels. The average SDC coverage gap
between LLVM level and assembly level is 31.21%, while the
highest SDC coverage gap reaches up to 82% in Stringsearch
benchmark.

• Weanalyze the root-causes of the deficiencies and summarize
them into five categories: store penetration, branch penetra-
tion, comparison penetration, call penetration, and mapping
penetration.

• We propose a novel technique called Flowery to mitigate the
protection deficiency based on the analysis of the root-causes.
Our technique achieve an average of 31.21% improvement in
SDC coverage compared with existing instruction duplica-
tion technique while incurring only 2.71% additional runtime
performance overhead.

2 FAULT MODEL AND TERMINOLOGY

In this section, we first define the terms we use, followed by a brief
description of the fault model used in the study.

2.1 Technical Terminology

We first define the terms we will use in the study:
Silent Data Corruption (SDC): A fault occurs and affect program
execution. The program completes its execution, but the output
differs from its error-free execution.

SDC Coverage: SDC coverage is defined as the proportion of all
SDCs occurring in a program that are detected by a given protec-
tion technique such as instruction duplication. SDC coverage can
be calculated by (𝑆𝐷𝐶𝑟𝑎𝑤 − 𝑆𝐷𝐶𝑝𝑟𝑜𝑡 )/𝑆𝐷𝐶𝑟𝑎𝑤 , where 𝑆𝐷𝐶𝑝𝑟𝑜𝑡

and 𝑆𝐷𝐶𝑟𝑎𝑤 denote program SDC probability with and without
protection respectively.
DUE: Detectable unrecoverable errors (DUEs) means the program
execution terminates early or crashes due to faults. For example,
operating system may throw an exception (e.g., segmentation fault)
and terminate the program execution.
Static Instruction: The instructions in the program code seen from
compile time.
Dynamic Instruction: An instance of static instruction that is exe-
cuted in a program execution.

2.2 Fault Model

A fault model describes what, when, and where a fault happens in
the target system under study. It then abstracts to a model that
guides the simulations of fault occurrence. Every resilience study
has to assume a fault model which sets the scope of the study.
When it comes the protection technique in resilience, there rarely
exists a single technique that can mitigate faults occurred in all
possible hardware components in a system. That is, each mitigation
technique in the literature ties to a fault model that the technique
is designed for. Thereby, their evaluation should be subjected to
the same fault model.

In the research of soft errors, there are twomain fault models that
are commonly studied in the literature. They are classified based on
the locations of fault occurrence: (1) memory faults and (2) datapath
faults. Memory faults focus on faults occurred in large storage
such as maim memory and cache etc, and can be mitigated by
deploying techniques such as Error Correction Code (ECC) [6]. On
the other hand, datapath faults are mainly for the faults happened
in individual latches in processor pipeline and load/store units etc.
These faults can be mitigated by applying instruction duplication
techniques [11, 12, 15, 18].

On the other front, the number of bit-flips may also vary. While
there have been some recent insights showing that multiple-bit-flip
faults may be possible in the future [30], vast majority of current
studies in the literature assume single-bit-flip in their fault mod-
els [11, 12, 18], so our study adopts single-bit-flips in our exper-
iments. Since our study focuses on instruction duplication tech-
niques, our fault model is set to the common datapath fault model
that the technique aims for. In this paper, we adopt the datapath
fault model with single bit-flips, which is commonly studied in
prior work in the area of instruction duplication.

Another important note is that the fault model used in a cross-
layer study needs to be consistent. It makes nonsense if a fault
model is used at one level but a different one at the other level. In
our case, we consider the evaluation at LLVM and assembly levels,
so our datapath fault model needs to be consistent at both levels.

In this study, we focus on SDCs rather than DUEs among the
failure types, as SDCs are the most insidious type of failures in
HPCs [12, 15, 16].
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3 INSTRUCTION DUPLICATION TECHNIQUE

Instruction duplication technique has been proposed in recent
decades [24, 26, 27]. The technique can be used to protect pro-
grams from soft errors occurred in datapath [8, 12, 15]. In short,
instruction duplication makes a copy of computation sequence in
the program and compares the results between the two copies. If
any mismatch is observed, errors are detected. Figure 1 shows how
instruction duplication works in more details. In the example, in-
struction D is a synchronization point (e.g., store, function call, or
control-flow branch.) at the end of a data dependency sequence,
instruction A, B, and C. The technique duplicates instructions by
inserting A’, B’, and C’ along with a checker before the synchro-
nization point D (say a store instruction) at the compile time. If any
faults occur in either copy, the checker will detect the mismatch at
runtime, and hence detect the error.

A A’
B

C

D

A
B

C

D

B’

C’

Checker

Error 
Detected

C = C’  C != C’

(a) (b)

Figure 1: Example of instruction duplication; (a) Original

program. (b) After instruction duplication.

The instruction duplication technique can be highly config-
urable [11, 12, 15, 18]. That is, developers can selectively choose
which instructions shall be protected based on the vulnerability
analysis and reliability target. Duplicating an instruction at compile
time will incur performance overhead at runtime since the instruc-
tions are doubled. At the same time, instructions have different
probabilities of causing SDCs in a program. Therefore, the trade-
off between SDC coverage and performance overhead presents an
optimization opportunity for developers to selectively protect the
most beneficial instructions with priority in order to achieve high
SDC coverage while incurring low performance overhead. The op-
timization problem can be formulated as a classic 0-1 knapsack
optimization problem [7, 17], with the SDC coverage provided as
benefit and the performance overhead as cost.

There have been a number of studies that show instruction dupli-
cation techniques can provide high SDC coverage with low perfor-
mance overhead [11, 12, 15, 18, 21]. Since SDC distribution is highly
application-specific among instructions in a program, developers
need to measure the SDC probability of each instruction before they
can choose which instruction to duplicate given a protection level.
Here, protection level refers to the maximum amount of additional
dynamic instructions generated due to the duplication of static
instructions in the program. As a result, fault injection analysis is
often used to assess the SDC probabilities of each instruction as
well as the overall SDC coverage a protection strategy provides.
LLVM compiler infrastructure [13] presents a unique opportunity
to allow developers to conduct fault injection analysis per each
LLVM IR instruction while being able to duplicate the one needed
at the same IR level based on the analysis. The procedure is at
compile time before program execution.

On the other front, it is possible to conduct assembly level instruc-
tion duplication. For example, Intel PIN [19], a popular dynamic
instrumentation tool for assembly code can duplicates assembly
instructions at runtime. While the technique is capable to conduct
a full duplication (e.g., duplicate all the executed instructions un-
conditionally), it is impractical to be selective at runtime due to
the large runtime overhead that the condition checking incurs. In
addition, due to the lack of a handy assembly code compiler that
is freely available to the public for vulnerability analysis and code
transformation at compile time, developers prefer LLVM level im-
plementation of instruction duplication. Therefore, most existing
instruction duplication techniques are implemented at LLVM IR
level [1, 4, 5, 15]. This largely motivates our study to conduct eval-
uation at assembly level to examine the protection effectiveness of
LLVM-based instruction duplication techniques.

4 EXPERIMENTAL SETUP

In this section, we describe the experimental setup we have for the
cross-layer evaluation of instruction duplication.

4.1 Program Benchmarks

Table 1: Details of Benchmarks; DI Count represents the

number of dynamic instructions in million.

Benchmark Suite Domain DI Count

Backprop Rodinia Machine Learning 148.20
BFS Rodinia Graph Algorithm 527.92
Pathfinder Rodinia Dynamic Programming 0.6
LUD Rodinia Linear Algebra 59.16
Needle Rodinia Dynamic Programming 593.39
kNN Rodinia Machine Learning 206.44
EP NPB Parallel Computing 4904.50
CG NPB Gradient Algorithm 721.95
IS NPB Sort Algorithm 43.97
FFT2 MiBench Signal Processing 3.24
Quicksort MiBench Sort Algorithm 1.98
Basicmath MiBench Mathematical Calculations 2.80
Susan MiBench Image Recognition 42.30
CRC32 MiBench Error Detection 21.90
Stringsearch MiBench Comparison Algorithm 2.60
Patricia MiBench Data Structure 4.96

We use 16 applications drawn from three benchmark suites
which are commonly used in HPC research [10, 12, 16]. We choose
the ones we are able to compile to both LLVM IR and binary for
the fault injectors we use in the experiment. Table 1 provides a
summary of the benchmarks used. For each benchmark, our compi-
lation is without any standard optimization. The benchmarks will
be used with instruction duplication technique as well as in fault
injection experiments in the study.

4.2 Implementation of Instruction Duplication

We follow the design of instruction duplication technique used
in [2, 11, 12, 15, 18] and described in Section 3. Similar to these
related studies, we use LLVM to implement the instruction duplica-
tion and validate the correctness of the implementation in Section 5.
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The implementation can be downloaded from our GitHub reposi-
tory1. We use the instruction duplication technique to protect each
target benchmark with 30%, 50%, 70%, and 100% protection levels
respectively for the cross-layer evaluation.

4.3 Fault Injection Methodology

In order to conduct fault injection evaluation on both LLVM IR and
assembly levels, we have to inject faults at each level respectively.
The details of the fault injection process are described as follows.

We inject faults at LLVM level by implementing a set of LLVM
compiler passes to do so. On the other hand, we use Intel PIN tool to
inject faults at assembly level. At either case, there are three parts
when conducting fault injection experiments: (1) Instrumentation;
(2) Profiling; (3) Fault injection. In the instrumentation phase, the
injectors add necessary code for implementing the profiling and
fault injection mechanism. In the profiling phase, the injectors need
to figure out the total number of dynamic instructions (either at
LLVM or assembly levels). Finally, in the fault injection phase, each
campaign will select a dynamic instruction among all the executed
ones for injecting a fault.

We configure both fault injectors to simulate fault occurrence as
per our fault model (Section 2.2). As we focus on faults occurred in
datapath, we inject faults into the destination register of a chosen
instruction. In more detail, in each fault injection campaign, we ran-
domly select an executed dynamic instruction, then we randomly
choose a bit position in its destination register to flip. We repeat the
process for 3,000 campaigns for each benchmark at each protection
level at LLVM and assembly levels in order to achieve statistical
significance in the measurement. The method is standard and com-
monly used in study the datapath fault model and hence inline
with prior work in the related area [11, 12, 15, 16, 18, 25, 28, 33]. In
particular, the existing studies on instruction duplication all adopt
the same fault model and injection method as instruction duplica-
tion is design for the fault model [2, 10–12, 15, 18]. Thereby, our
fault injection simulation largely reproduces what prior work on
instruction duplication has been done - we also confirm this by
comparing fault injection results in Section 5.

4.4 Hardware Platform and ISA

To conduct our experiment, we use a Ubuntu 20.04 machine with
an Intel Xeon processors. The machine has X86 ISA, which is the
most common ISA in HPC systems, thereby it is our focus in this
paper.

5 CROSS-LAYER EVALUATION

In this section, we conduct a large-scale fault injection experiment
to evaluate the effectiveness of SDC detection by instruction dupli-
cation at LLVM IR and assembly instruction levels. We first describe
the observations we make from the experiment results, then investi-
gate the potential root-causes that are responsible for the deficiency
of the protection.

1Code: https://github.com/hyfshishen/SC23-FLOWERY

5.1 Experiment Results

We present the fault injection results in Figure 2. From the experi-
ment results, we make three major observations. They are described
as follows:

Observation 1: The SDC coverages obtained in each benchmark at
the same protection levels are very application-specific. For example,
Pathfinder benchmark reveals a steeper curve comparedwith others
such as BFS benchmark at both LLVM and assembly levels. At 30%
protection level, Pathfinder benchmark reaches an SDC coverage
of 94.26% evaluated at LLVM level, whereas in EP benchmark, it is
only 63.72%. Similar observations can be made at assembly level.
For instance, at 70% protection level, Susan benchmark has an SDC
coverage of 85.76%, while Backprop benchmark reveals only 51.66%.
Themain reason is that error propagation is program-specific, hence
SDCs are distributed differently across programs. The trade-offs
brought by instruction duplication between SDC coverage and
performance overhead vary in programs.

Observation 2: There is a clear gap between LLVM and assembly
level protection in SDC coverage. In more detail, the SDC coverage
measured at assembly level often falls short compared with that
at LLVM level evaluation. For example, at 30% protection level,
Quicksort benchmark reaches an SDC coverage of 85.02% at IR
level, while it has only 74.45% at assembly level. Furthermore, at
50% protection level, Basicmath benchmark has 87.26% at IR level
while it is only 53.46% at assembly level. The only exception is
Susan benchmark at 30% protection level. Both IR and assembly
levels show rather similar coverage of about 76.09%.

The observation we make is concerning since the assembly level
evaluation represents a more realistic measurement because it is
closer to the fault occurrence. That is, the SDC coverage measured
and claimed at LLVM level in prior studies [10–12, 15, 18] tends to
be over-optimistic – the real coverage provided by the instruction
duplication at assembly level can be much lower than expected.

Observation 3: Instruction duplication technique will rarely reach
100% protection even all the instructions are protected. This is a sur-
prising result as it shows LLVM-based instruction duplication may
have intrinsic incapability to eliminate SDCs from a program even
at full protection. In other words, even though all the instructions at
LLVM level are duplicated, there are still assembly instructions that
are skipped from the protection. For example, at assembly level,
Quicksort benchmark has only 56.20% SDC coverage under full
protection where it is measured as 100% at LLVM level. Similarly,
BFS benchmark has only 53.33% at assembly level, suffering from
the same issue. Susan benchmark, on the other hand, has 86.46%,
the highest coverage with full protection among the benchmarks,
but still far from achieving 100% coverage as expected from an
evaluation at LLVM level. Note that at LLVM level fault injection,
similar to what prior work has reported [10–12, 15, 18], the instruc-
tion duplication we use with full protection can effectively detect
all the SDCs, indicating the instruction duplication mechanism
implemented in the study are correct and inline with prior work.

In summary, the observations we make clearly illustrate the
deficiency in the instruction duplication technique that is popularly
used in existing literature. It raises concerns to HPC community
as the technique is commonly applied and used in HPC systems as
well as other mission-critical systems for ensuring reliability.
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Figure 2: SDC coverage evaluation at LLVM and assembly level; X-axis denotes “protection level", Y-axis denotes “SDC coverage";

Blue line and red line represent LLVM level and assembly level evaluation respectively.

5.2 Root-Causes of Deficiencies

In this section, we investigate the root-causes that lead to the pro-
tection deficiency revealed at assembly level, and characterize the
patterns of them in order to develop a technique that identifies and
mitigates the deficiency.

We first go through every fault injection case which leads to the
deficiency in our experiment results and analyze the patterns. As
a result, we classify all the problematic cases into five categories.
They are store penetration, branch penetration, comparison pen-
etration, call penetration and mapping penetration. Among total,
store penetration, comparison penetration, and branch penetration
take up to about 94.50% whereas call penetration and mapping
penetration cases occupy only 5.50%. Their distribution is shown
in Figure 3. Next, we explain each category in details.

Mapping penetration
2.5%
Comparison penetration
19.7%
Call penetration
3.1%
Branch penetration
35.7%

Store penetration
39.1%

Figure 3: Percentage of Different Deficiency Cases

Store Penetration: It is due to the difference in store instructions
between LLVM IR and assembly instructions when backend compi-
lation is applied. Recall that in instruction duplication, a checker
must be added before any synchronization locations such as store

instructions. At LLVM level, store instructions are implemented
with single IR instruction. However, at assembly level, the counter-
part of the store instruction may involve the transfer of the stored
value of the operand to a general-purpose register before writing
to the target memory address.

1 %92 = load i32* @rows, align 4
2 ; During register allocation, the value of 92%
3 ; could be spilled into stack.
4 store float %92, float* %sum

Figure 4: Store Instruction at LLVM Level

1 mov -0x40(%rbp),%rax
2 mov %rax,-0x1c(%rbp)

Figure 5: Store Instruction at Assembly Level

Figure 4 shows an example of a store instruction at LLVM level
and the corresponding assembly code. Note that LLVM IR intro-
duces temporary value identifiers (e.g., %1) which are similar to
registers. Ideally, all such temporary values should bemapped to reg-
isters via register allocation algorithms during compilation. How-
ever, due to the limited number of general-purpose registers, such
temporary values should be spilled to the memory and reloaded
back into the register when needed. In X86, the mov instruction
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cannot take two memory addresses as the parameters. Therefore,
moving one spilled value to a named variable e.g.,%92 involves two
moving operations, memory to register and register to memory,
leading to the “non-atomic” issue of the IR store instruction.

At LLVM IR level, store instructions are not considered as a fault
injection site whereas the additional instruction at assembly level
becomes one. In the assembly level fault injections, we observe
faults injected into the first instruction as shown in the figure 5
and lead to SDC. On average, the store penetration cases occupy a
total of 39.10% across all the deficiency cases across benchmarks in
our experiments. In the individual benchmarks, we observe store
penetration cases vary. For example, in kNN benchmark, 15.67%
cases are store penetrations while it is 56.10% in BFS benchmark,
depending on whether a program is memory-bound or not.

Branch Penetration: In LLVM IR, a conditional branch instruc-
tion accepts a Boolean condition and two destination labels as its
parameters. When translated to assembly code, the condition is
generally already well-stored in the FLAGS register. Hence the con-
ditional jump instruction can directly refer to the register for the
condition. However, this is true only if the previous consecutive
IR is an icmp instruction. Otherwise, the translated assembly code
should set the EFLAG/RFLAG register first before executing the
conditional jump. In other words, the conditional branch instruc-
tion is also “non-atomic” if the previous IR instruction is not icmp.
Such cases widely exist in the protected IRs.

1 BB0:
2 br i1 %139, label %142, label %267

Figure 6: Branch Instruction at LLVM Level

1 test $0x1,%al
2 jne 400ea7 <lud_omp+0x2f7>
3 jmpq 4010e7 <lud_omp+0x537>

Figure 7: Branch Instruction at Assembly Level

Figure 6 shows the example. The branch instruction is at the
head of a basic block and does not have an icmp instruction as its
previous consecutive IR. This leads to the code at assembly level in
Figure 7 introducing a test instruction to set the EFLAG/RFLAG
register before jumping to the destination address.

Therefore, at LLVM IR level, branch instructions are not consid-
ered as a fault injection site while it becomes one at assembly level.
In the assembly level fault injections, we detect faults injected into
status register after the test instruction as shown above and lead
to SDC. On average, the store penetration cases occupy a total of
35.70% across all the deficiency cases in our experiments. And this
category also varies a lot across different benchmarks. For exam-
ple, in FFT2 benchmark, the branch penetration cases occupy only
27.30% across all its deficiency cases, but in kNN benchmark the
number increases to 57.10%.

Comparison Penetration: This pattern typically concerns the situ-
ation when trying to validate the result of a comparison instruction,
and it will lead to multiple consecutive icmp instructions at the IR

level. Recall that in instruction duplication, if we are going to vali-
date the result of an icmp instruction, the protected code should run
the two icmp instructions and a third icmp to check whether they
produce the same results. However, such code may be optimized
by the compiler and invalidate the protection, e.g., as a constant
condition. In practice, the optimization result depends on the char-
acteristics of the dependent instructions. LLVM has implemented
dozens of powerful optimization passes to optimize IR, such as
dead code elimination and constant propagation. It applies these
optimization passes iteratively on a code snippet. For example, if
the compiler knows two temporary values are computed based on
the same expression (available expression analysis), it may elimi-
nate one redundant expression and solve the data dependency of
related instructions. This optimization result may enable further
optimizations afterwards.

1 ; <label>:0
2 %1 = load i32* %a, align 4
3 %2 = load i32* %a, align 4
4 %3 = load i32* %b, align 4
5 %4 = load i32* %b, align 4
6 %5 = icmp slt i32 %1, %3
7 %6 = icmp slt i32 %2, %4
8 %check_cmp = icmp eq i1 %5, %6
9 br i1 %check_cmp, label %7, label %checkBb
10 checkBb:
11 call void @check_flag()
12 br label %7
13 ; <label>:7
14 br i1 %5, label %8, label %9,

Figure 8: Comparison Penetration at LLVM Level

1 mov %eax,-0xfc(%rbp)
2 mov -0xb0(%rbp),%eax
3 mov -0xac(%rbp),%ecx
4 sub %ecx,%eax
5 setl %dl
6 mov $0x1,%sil
7 test %sil,%sil
8 mov %eax,-0x100(%rbp)
9 mov %dl,-0x101(%rbp)
10 jne 400a07 <main+0x237>
11 jmpq 400a02 <main+0x232>
12 callq 402760 <check_flag>
13 mov -0x101(%rbp),%al
14 test $0x1,%al
15 jne 400a1a <main+0x24a>
16 jmpq 400aa9 <main+0x2d9>

Figure 9: Comparison Penetration at Assembly Level

Figure 8 shows an example. The icmp instruction is duplicated
and checked at the end of a data dependency sequence, while the
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assembly code in figure 9 shows that the function of the code
is optimized and only runs comparison instruction setl once and
replace the third icmp instruction with a constant condition.

Consequently, at LLVM IR level, protection techniques used for
comparison instructions work but they fail at assembly level. At
assembly level fault injections, we observe that faults injected into
the setl instruction as shown above and lead to SDC. On average,
the comparison penetration cases occupy a total of 19.70% across all
the deficiency cases across benchmarks. In individual benchmarks,
we see such cases vary depending on the control-flow properties
of programs. In BFS benchmark, for example, the comparison pen-
etration only occupies 6.1% of all deficiency cases, but in Needle
benchmark, the number reaches 37.5%.

Call Penetration: The different ways to run a function call be-
tween LLVM IR and assembly instructions are also one of the root-
causes. According to the calling convention in X86, all parameters
should be placed on specific registers following an order before
making a function call. Therefore, one such parameterized function
call should be translated into a set of several assembly instructions,
i.e., register preparation and call or jump to the destination code.
However, register preparation is not required in LLVM IR because
a call instruction in LLVM IR can directly take function parameters.
Therefore, it also suffers similar “non-atomic” issues.

1 call void @_Z3runiPPc(i32 %4, i8** %7)

Figure 10: Call Instruction at LLVM Level

1 mov -0x14(%rbp),%edi
2 mov -0x20(%rbp),%rsi
3 callq 400f70 <_Z3runiPPc>

Figure 11: Call Instruction at Assembly Level

Figure 10 shows an example. The call instruction does not have
processes to transfer the function parameters to make a function
call. However, at assembly level code shown in figure 11, two mov
instructions are introduced before making this function call which
becomes fault injection sites.

As a consequence, at LLVM IR level, call instructions are not
considered as a fault injection site whereas it becomes one at assem-
bly level. In the assembly level fault injections, we observe faults
injected into mov instructions as shown above and lead to SDC. On
average, the call penetration cases are a total of 3.10% among all. In
Needle benchmark, the call penetration share of 12.50% of the pene-
tration cases across all the deficiency cases but in BFS benchmark it
only has 2.43%. So this prevalence of the category also varies from
program to program.

Mapping Penetration: We attribute the last root-cause to the
mapping problem that certain instructions and operations may
not be mappable between the IR level and the assembly level. For
example, when using a callee-saved register (e.g., rbp), the callee
should back up its existing value on the stack via the push command
and restore its value via pop. Such semantics do not exist in the IR
code. Figure 12 shows an example. When running a function call,

the program first push the target value into the stack, and execute
all the instructions inside the function. Then, before retq is executed,
the target value will be popped out. These two instructions do not
have corresponding IR instructions at the LLVM level.

1 push %rbp
2 ... ; function body
3 pop %rbp
4 retq

Figure 12: Mapping Penetration at Assembly Level

As a result, in the assembly level fault injection, we observe faults
injected into the instructions that are not mappable between two
levels and cause SDCs. However, the mapping penetration cases
only have 2.50% among all the deficiency cases on average. The
highest mapping penetration rate is 9.1% in FFT2 benchmark, in
contrast, it is 0% in LUD benchmark.

5.3 Summary of Root-Causes

The key results are summarized as follows: (1) Some instructions
do not have a fault injection site at the IR level, but when con-
verted to the assembly level, there are unprotected areas that can
be penetrated. These are store penetration, branch penetration and
call penetration, they occupy 39.1%, 35.7%, and 3.1% of the total
number of penetrations, respectively. (2) Some cases are due to
the nullification of the original IR-level protection mechanism by
the mapping process of the two layers. For example, comparison
penetration and partial mapping penetration account for 19.7% and
2.5% of the total number of penetrations, respectively. Based on the
results, it can be observed that the existing instruction duplication
technique implemented at the IR level lacks the ability to provide
adequate protection against fault occurred at the assembly level. In
order to address this issue, we propose various mitigating methods
at the IR level to enhance its protection in Section 6.

6 OUR SOLUTION

In this section, we propose a set of compiler patches that fix the
deficiency of the protection without incurring much performance
overhead. Our technique is fully automated, and transparent to
users, bridging the gaps between LLVM and assembly level coverage
in the protection provided by instruction duplication. The proposed
technique, named Flowery, consists of three parts, each of which
is described below.

6.1 Eager Mode of Store

As mentioned earlier, the reason for store penetration is the scarcity
of general-purpose registers, which results in temporary values
being stored in memory and later retrieved back into the registers
during the execution of store instructions at the assembly level.
Existing IR-based instruction duplication techniques employ a lazy
mode, i.e., a value must be checked before being stored. Such lazy
mode is especially vulnerable to the register spilling issue. Note that
when a checker is added, the branch instruction in the checker will
separate the following synchronization point (in this case, the store
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instruction) into an individual basic block. Since the temporary
value to be stored is not immediately used, it is prone to be spilled.

To overcome the spilling issue, we propose to employ an eager
mode for store, i.e., store before being checked. Figure 13 illustrates
the idea. As seen, if wemove the problematic store instruction to the
location before the checker and connect it to the end of one of the
computation copies in the instruction duplication, the target store
instruction will be used right before itself (e.g., A instruction in the
example) within its current basic block thus move the temporary
value into a register. This way we avoid introducing any additional
computations. However, this may come with a problem that we
already stored error data before it has been detected. However, if
the error data has been detected, we don’t need to keep running
this program, so there is no extra loss.

Therefore, by swapping all the problematic store instructions in
respect to their checkers as mentioned above, the store instructions
will not bring any additional assembly instructions after the back-
end compilation. We expect to eliminate the deficiency caused by
the store penetration in the protection. The proposedmethod can be
implemented at LLVM IR level as a compiler pass after instruction
duplication and thereby mitigate issue at assembly level.

A A’

checker

Store

A A’

checker

Store

(a) (b)

Figure 13: Example of Eager Mode of Store. (a) Original

Checker Position. (b) Eager Mode Checker Position.

6.2 Postponed Branch Condition Check

Recall that one of the root-causes is the difference in branch in-
structions between LLVM IR and assembly instructions. At the IR
level, the branch instruction directly changes the address of the
program at the end of each run and has no return value. At the
assembly level, if the branch instruction’s previous consecutive IR is
not an icmp instruction, it will set the FLAGS register by itself thus
introducing a fault injection site. This, in particular, causes prob-
lems in instruction duplication because when a checker is added,
the branch instruction in the checker will separate the following
synchronization point (in this case, the branch instruction) into an
individual basic block without an icmp instruction before it, thereby
causing the issue.

Therefore, in order to protect branch instructions, we have devel-
oped a patch in Flowery, which can provide effective protection for
branch instructions at low overhead. Since the branch instruction
cannot be duplicated, we cannot directly determine whether a bit
flip has occurred in the status register or not, but we can place the
error detection after the execution of the branch instruction. In
Flowery, we store the value of the branch instruction in a global
variable before the branch instruction is executed, and after exe-
cuting the branch instruction we insert two checkers in the two
possible destinations of the branch instruction separately. Inside
each checker, we will detect if the global variable value matches the

destination. If the value of the global variable does not correspond
to the basic block that is jumped, the program will detect the error
for protection purposes. Figure 14 illustrates how this patch works
to a branch instruction. By using this patch, we expect to solve the
deficiency caused by the branch penetration in the protection. The
method we showed above can be implemented at LLVM IR level
as a compiler pass after instruction duplication and to solve the
problem in assembly level.

Br R0, label BB0, label BB1
BB1
if (@JumpReg != 1)
{
errorDetect()
}

BB0
if (@JumpReg != 0)
{
errorDetect()
}

store R0, @JumpReg

Status Reg = 0

Status Reg = R0

Status Reg = 1

single bit flip

Figure 14: Example of Postponing Branch Condition Check

6.3 Anti-Comparison Duplication Optimization

As we analyzed in section 5, one of the root-causes is the compiler
optimization when comparison instruction is located at the end of a
data dependency sequence. This almost happens in every compari-
son instruction, meaning that the instruction duplication technique
used for comparison instruction fails.

To solve this problem, one possible way is to avoid the optimiza-
tion that targets the comparison instructions. To do this, our idea
is to move the cmp instructions into another new basic block and
complicate the optimization problem. As shown in Figure 15, A and
B are two operands of the cmp instruction. If we directly duplicate
the instruction sequence of def(A)-def(B)-cmp(A,B), it is not difficult
for the compiler to recognize def(A) is equivalent to def(A’), and
cmp(A,B) is equivalent to cmp(A’,B’). Our anti-optimization first
separates the cmp instruction and the definition of A and B into dif-
ferent basic blocks. Furthermore, we add another conditional check
before reaching the cmp block and thus complicate the reachability
analysis from the def(A)-def(B) to cmp(A,B). Figure 15 presents the
idea. As seen, if we force a comparison instruction as a single inde-
pendent dataflow, it will be protected and checked individually. By
making all the comparison instructions independently check and
duplicated, we expect to avoid the optimization, thus eliminating
the deficiency caused by the comparison penetration in the protec-
tion. The proposed method can also be implemented at LLVM IR
level as a compiler pass after instruction duplication and thereby
mitigate the issue at assembly level.

For the rest of deficiency cases (call and mapping penetrations),
we do not come up with LLVM-level solutions. However, they
can be mitigated at assembly level if the corresponding compiler
for transformation and analysis is available. With that said, the
total covered cases (store, comparison and branch penetrations) by
the proposed patches above already reach 94.4% among the total
reported deficiency cases (Figure 3).
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A

CMP

B

A’

B’

CMP’

Checker

A

CMP

B

A’

B’

CMP’

Checker

Checker’

BB0： BB0:

BB1：

Figure 15: Example of Anti-Comparison Duplication Opti-

mization. (a) Original cmp position. (b) After Avoiding Opti-

mization cmp Position.

6.4 Workflow of Flowery

Figure 16 shows the workflow of Flowery. All the patches in Flow-
ery are implemented as a set of LLVM compiler passes. During
the compile time, the user runs existing LLVM-based instruction
duplication as normal, then Flowery is applied after the instruc-
tion duplication to mitigate the protection deficiency. Finally, the
protected binary will be generated for execution. The entire process
is fully automated and transparent to the user.

Existing
Instruction
Duplication

Flowery

LLVM IR Level

Program 
Code

Protected 
Binary

Figure 16: Workflow of Flowery.

7 EVALUATION OF OUR TECHNIQUE

In this section, we evaluate our technique in protecting programs
from SDCs. The evaluation of Flowery is at assembly level. We
compare the results with original instruction duplication technique
measured at LLVMand assembly level respectively –we use it as our
baseline. There are three metrics we consider in our evaluation: (1)
SDC coverage provided, (2) runtime performance overhead, and (3)
time taken to execute our technique. In the explanation, we use ID-
IR and ID-Assembly to denote the original instruction duplication
evaluated at LLVM level and assembly level respectively.

7.1 SDC Coverage

Figure 17 demonstrates the SDC coverage provided by Flowery
measured at assembly level as well as the original instruction du-
plication measured at LLVM and assembly levels. We make three
main observations from the results.

Our first observation is that the coverage provided by Flowery
is always higher than that by ID-Assembly. Note that both are
evaluated at assembly level. For example, in Susan, at 30%, 50%, and
70% protection levels, we observe that Flowery provides at least
92.01%, 95.49%, and 98.26% SDC coverage respectively, whereas
they are only 76.39%, 79.86%, and 85.76% in ID-Assembly. This
shows that our proposed mitigate technique repairs the protection
deficiency of instruction duplication at assembly level, and only
improves the coverage of original instruction duplication technique.

In individual cases, Flowery provides relatively higher coverage
in some benchmarks such as Crc32 and EP compared with others
such as Stringsearch and Patricia. This is because the proportion of
penetrations is application-specific. In Crc32 and EP benchmarks,
their penetration is mainly occupied by branch, comparison, and
store penetrations, and the proportion of these three penetrations
is 90.8% in Crc32 and 94.6% in EP. However, in Stringsearch and
Patricia, the function call numbers and instructions with mapping
issues are very high, the proportion of these two even reaches 23%
in Patricia, which leads to Flowery does not perform as well as it
on other benchmarks.

On the other hand, we observe that the coverage provided by
Flowery is much closer to that by ID-IR. Unlike ID-Assembly,
Flowery closes the gap between LLVM and assembly level evalu-
ation in most of the benchmarks. This shows that developers can
trust their protection estimated when using instruction duplication
technique, and expect the coverage to be similar to what they aim
at.

We notice that the gap is relatively wider between Flowery
and ID-IR in Stringsearch and Patricia benchmarks. We speculate
that this is because these two benchmarks have a great number
of function calls and mapping penetrations that make the gap not
fixable by Flowery in each protection level.

Finally, we observe that Flowery provides much higher coverage
at full protection. Recall that ID-Assembly provides an average cov-
erage of only 76.74% at full protection. In contrast, with Flowery,
the average coverage reaches 93.72%. From individual benchmark
perspective, the highest coverage Flowery provides is 99.31% in
Susan whereas it is 86.46% by ID-Assembly. The worst case in Flow-
ery is Basicmath benchmark as it provides only 82.3% coverage,
but still much higher than ID-Assembly (59.58%).

The reason Flowery cannot reach 100% protection at full protec-
tion is because Flowery aims to mitigate the gap between LLVM
level and Assembly level with low overhead, and Flowery is imple-
mented in LLVM level. Since some of the penetrations can hardly
be fixed at LLVM level e.g., call and mapping penetrations, we can
not mitigate all of them with a simple and low-cost technique.

7.2 Performance Overhead

We evaluate the runtime performance overhead incurred by de-
ploying Flowery. Since Flowery is on top of original instruction
duplication technique, we are interested in understanding the addi-
tional overhead our technique brings to the instruction duplication.
To gauge this, we measure the runtime overheads (in wall-clock
time) incurred by instruction duplication before and after applying
Flowery. As measured, the additional overheads by Flowery are
1.93%, 1.63%, 3.72%, 3.74% on average at 30%, 50%, 70%, and 100%
protection levels respectively. Each time measurement is taken
as an average of three executions of a program to minimize the
noise in the measurement. The results indicate that our technique
incurs very runtime low performance overhead compared with
original instruction duplication technique, showing that Flowery
is practical.
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Figure 17: SDC coveragemeasured using Flowery compared with ID-IR and ID-Assembly; X-axis denotes “protection level", and

Y-axis denotes “SDC coverage" measured; Blue line represents ID-IR, red line represents ID-Assembly, yellow line represents

Flowerymeasured at assembly level.

7.3 Execution Time

We now report the time taken to execute Flowery. After applying
instruction duplication technique to a program, Flowery can be
applied as an LLVM compiler transformation pass - all these happen
at compile-time before the deployment of the protected application.
Our measurement shows that Flowery takes only 0.12 seconds
on average for each benchmark, with a maximum of 0.51 seconds
(CG benchmark) and a minimum of 0.08 seconds (Quicksort bench-
mark). We find the time taken depends on the number of static
instructions in a program, as Flowery needs to linearly scan the
code and generate transformations. For example, in CG benchmark,
the number of static instructions is 2290 while it is 92 in Quicksort
benchmark. Overall, Flowery takes almost negotiable amount of
time at compile-time.

8 DISCUSSION

Implication to Existing Instruction Duplication Techniques Aswe show
in Section 5, existing instruction duplication technique is over-
optimistic on SDC coverage, and often suffers from low SDC cover-
age at assembly level. In Section 7, we show that Flowerymitigates
the deficiency. After applying Flowery on top of existing instruc-
tion duplication technique, the protection shows similar SDC cov-
erage measured at both LLVM and assembly levels (Figure 17). The
entire process of Flowery is automated and transparent to the user
and incurs only minimal performance overhead. With Flowery,
HPC developers can now confidently apply LLVM-based instruc-
tion duplication techniques that are popular in HPC, and protect
their applications from SDCs.

Other Implementation Options We implement Flowery at LLVM
level for patching protection deficiency. One of the reasons is that
LLVM is largely supported as open-source tools across research
communities and industries. Leveraging IR-based infrastructure
allows developers to easily pinpoint their reliability analysis to the
protection in given programs. With that said, it is also possible to
implement the patches at assembly level. We do not choose this
way since one rarely has a convenient backend compiler to do so.
ISA Asmentioned, we focus on X86 ISA at assembly level because it
is the most commonly seen ISA in HPC systems. Hence, our results
may be ISA-specific. With that said, we believe that the conjectures
we report should also be insightful to other ISA platforms as we
explore both the common background of ISAs and the IR issues. For
example, RISC-V and ARM may both suffer from store penetration
issues because it also has limited registers; Comparison penetration
cases may also be observed as well because the root-cause lies in
IR optimization and is irrelevant to ISAs.

9 RELATEDWORK

Instruction Duplication Techniques Instruction duplication has been
proposed for more than two decades. [24, 26, 27] Soon after that, it
becomes a popular technique for detecting soft errors at the pro-
gram level [11, 12, 18, 21, 33] Laguna et al. [12] utilized machine
learning techniques to selectively duplicate the most vulnerable
instructions using instruction duplication technique, in order to
detect soft errors at a low cost. Li et al. [15] proposed an analytical
model to identify the most vulnerable instructions for protection
and used instruction duplication to mitigate SDCs. Others have
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focused on exploring SDC coverage variations in instruction du-
plication technique [9, 10, 14, 33]. These studies do not investigate
cross-layer protection effectiveness of instruction duplication.
Fault Injection Study For over 50 years, fault injection techniques
have been proposed as a crucial element in assessing software
protection. Numerous researchers have developed diverse fault
injection tools at various levels to replicate and simulate fault oc-
currence [20, 29, 32] Wei et al. [32] proposed LLFI, a configurable
fault injector for the LLVM IR level, and compare its performance
with PINFI fault injector. NFTAPE [29] is a fault injection tool at
the assembly level for emulating hardware faults. NFTAPE utilizes
machine code-based break-point injection, which permits users to
create their own injectors operating at the source code level. The
work demonstrated the usefulness of the injector for conducting
resilience analysis of programs. G-SWiFT[20] aims to simulate soft-
ware defects by detecting clusters of assembly code instructions
that correspond to high-level software constructs, and then intro-
ducing faults in these clusters to emulate software deficiency at the
machine code level. None of them focuses the protection coverage
of instruction duplication techniques.
Soft Error Cross-Layer Evaluation Vallero et al. [31] proposed a scal-
able, cross-layer method and a supporting suite of tools for accurate
and fast estimation of reliability. Ebrahimi et al. [3] explained the
significance of cross-layer soft error modeling and mitigation, and
demonstrates how it can lead to a low-cost design for soft error
reliability by combining existing soft error modeling techniques.
The most related work is [2]. The report first mentioned that exist-
ing instruction duplication technique may suffer from protection
deficiency. However, neither analysis nor solutions were provided
in the report. In contrast, our work quantitatively shows the pro-
tection deficiency and analyzes the root-causes of it. Moreover, we
propose solutions, Flowery, and demonstrate the effectiveness of
the technique.

10 CONCLUSION

In conclusion, we investigate the effectiveness of LLVM-based in-
struction duplication technique at assembly level, and discover the
root-causes of the inconsistency between LLVM level and assembly
level protection. We observe that existing instruction duplication
technique often suffer from low SDC coverage if measured at as-
sembly level. To mitigate the issues, we propose Flowery, a set of
compiler passes that mitigate the protection deficiency on top of
existing instruction duplication technique. Our evaluation shows
that Flowery is effective in mitigating protection deficiency in
instruction duplication.
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