
AMRIC: A Novel In Situ Lossy Compression
Framework for Efficient I/O in Adaptive Mesh
Refinement (AMR) Applications
DaoceWang, Jesus Pulido, Pascal Grosset, Jiannan Tian, Sian Jin, Houjun Tang, Jean Sexton,
Sheng Di, Kai Zhao, Bo Fang, Zarija Lukić, Franck Cappello, James Ahrens, Dingwen Tao

1/3/24 1

Our AMRIC
Compression

Ratio = 24

AMReX
Compression

Ratio = 19

Original
Data

Better AMR Compression

Background: AMR

• Introduction to AMR

• Each mesh represents a value of an area.

• Smaller mesh à higher resolution

• Change the mesh (spatial resolution) based on the
level of refinement needed by the simulation, use
finer mesh in “more important” region.

• Achieve the desired accuracy as well as increase
computational and storage savings.

• Result in hierarchical data with different resolutions

• One of the most widely used frameworks for HPC
applications

1/3/24 3

https://www.cttc.upc.edu/?q=node/165

Fine

Coarse

Background: AMR

• Example of AMR

• A mesh will be refined when its value (e.g., density/velocity) meets refinement criteria (i.e.,
greater than the threshold)

1/3/24 4

Meet refinement criteria_1

Meet refinement criteria_2

Background: AMR

• Example of AMR

• The grid structure changes with the universe’s evolution

• The dashed boxes indicate different resolutions within one timestep

1/3/24 5
Vis of three key timesteps (zoom in) of a cosmology simulation

Different Types of AMR

• Tree-based AMR

• Organizes the grids as leaves and has no
redundant data across different levels

• More complex and time-consuming to
perform visualization and analysis

• Patch-based AMR

• Saves the data that will be refined at the
fine level in the coarse level redundantly

• The redundant coarse data will not be
used in post-analysis and vis

• We focus on patch-based AMR AMReX

• We discard the redundant coarse data
while doing the compression

1/3/24 6

ht
tp

://
cu

ci
s.

ec
e.

no
rt

hw
es

te
rn

.e
du

/p
ro

je
ct

s/
D

A
M

S
EL

A
M

R
eX

: B
ui

ld
in

g
a

B
lo

ck
-S

tr
uc

tu
re

d
A

M
R

 A
pp

lic
at

io
n

Motivation: Why Compression

• Even with AMR, the size of data generated by apps could still be prodigious
• E.g., Nyx non-AMR dataset 4096^3 * 10 = 5TB (only for one snapshot)

• AMR dataset: 50% full resolution, 50% half resolution à 2.8TB

• Will take a single node at Summit for 2.8TB/2.1 GB/s = 22 mins

• Trend of Supercomputing Systems
• The compute capability is developed much faster than storage bandwidth: a widening gap

• between compute unit and storage bandwidth (PF–SB), or

• between main memory size and storage bandwidth (MS–SB)

1/3/24 7

PF: peak FLOPS * when using burst buffer ** counting only DDR4 Source: F. Cappello (ANL)

supercomputer year class PF MS SB MS/SB PF/SB

Cray Jaguar 2008 1 PFLOPS 1.75 PFLOPS 360 TB 240 GB/S 1.5k 7.3k

Cray Blue Waters 2012 10 PFLOPS 13.3 PFLOPS 1.5 PB 1.1 TB/S 1.3k 13k

Cray CORI 2017 10 PFLOPS 30 PFLOPS 1.4 PB 1.7 TB/S* 0.8k 17k

IBM Summit 2018 100 PFLOPS 200 PFLOPS >10 PB** 2.5 TB/S >4k 80k

FRONTIER 2023 1 exaFLOPS 1680 PFLOPS 39 PB ~7.5 TB/S 5.2K 224k

Background: Compression

• Lossy compression on scientific data
• Offers much higher compression ratios than lossless

compression by trading a little bit of accuracy

• Traditional lossy compressors (JPEG) are designed for
images (int) à bad performance on scientific data
(floating-point data)

• New generation of lossy compressors:

• SZ (Prediction based), nice compression ratio

• SZ-Lor/Reg (faster); SZ-Interp (higher ratio)

• ZFP (Transform based), high throughput

• TThresh (HOSVD based), works nice in 3d but slow

1/3/24 8

Lorenzo predictor
(SZ-Lor/Reg)

HOSVD
(TThresh)

Spline interpolation (SZ-Interp)

Error-Controlled Lossy Compression Optimized for High Compression Ratios of Scientific Datasets

TTHRESH: Tensor Compression for Multidimensional Visual Data

Fixed-Rate Compressed Floating-Point Arrays

111111111111111
TTHRESH:%20Tensor%20Compression%20for%20Multidimensional%20Visual%20Data
Fixed-Rate%20Compressed%20Floating-Point%20Arrays

• zMesh [Luo et al., IPDPS’21]

• Preprocess and leverage the data redundancy across different AMR levels.

• Compress the 2/3D data in 1D à cannot leverage higher-dimension compression

• TAC [Wang et al., HPDC’22]

• Improve zMesh’s compression quality through adaptive 3D compression

• 3.3x higher compression ratio under the same data distortion

SOTA AMR Compression

1/3/24 9

original 1d data

reordered 1d data
2d AMR data layout

Use in situ Compression with Simulation

• zMesh, TAC are not suitable for in situ compression

• zMesh requires extra communication for reordering in parallel scenarios

• TAC requires the reconstruction of the entire domain’s hierarchy

• Result in significant overhead for in parallel scenarios

• In situ compression could save time & enhance I/O efficiency

• Compressing data during the application’s runtime

• Offline: app write ori data to disk à SZ read ori data à SZ write compressed data to disk

• In situ: app directly writes compressed data to disk

• AMReX framework supports in situ AMR data compression (SZ)

• Only compresses the data in 1D à low compression quality

• Cannot effectively utilize the HDF5 filter à low CR and I/O performance

1/3/24 10

AMRIC

• AMRIC: First In Situ Lossy Compression Framework for AMR Applications

• Improve both I/O efficiency and boost compression perf for AMR applications

• Overview

• Compression-oriented preprocessing workflow for 3D AMR data compression

• Optimize the state-of-the-art SZ lossy compressor’s efficiency on AMR data

• Overcome the gap between the HDF5 and AMR applications

1/3/24 11

Integrated into AMReX
and can be easily
deployed to AMReX’s app

Prepossessing of AMR Data

• Remove redundancy

• The coarsest lvl_0 overlaps with the finer lvl_1; lvl_1 overlaps with the finest lvl_2

• The redundant coarse regions can be removed to save space

• Challenge: irregular shapes for 3D compression

• Use uniform partition to rearrange the boxes into a collection of unit blocks

• Reorganizing blocks based on different compressors to improve compression performance

1/3/24 12

…

…
SZ_Lor/Reg

SZ_Interp

Remove
Redundancy Reorganize

Level_1 w/o
Redundancy

Original Data
Unit

Blocks

Partition …

Prepossessing of AMR Data

• For SZ_L/R, we simply linearize the partitioned unit blocks for high-speed

• For SZ_Interp, we cluster the unit blocks for better compression performance

• SZ_Interp will perform global interpolation for all 3 dimensions of the entire dataset

• Cluster the unit blocks to balance the interpolation process across multiple dimensions

1/3/24 13

Rate-distortion comparison
between linear and cluster
arrangements across
different levels for SZ_Interp

10 20 30 40 50 60 70
Compression Ratio

50

60

70

P
S

N
R

Coarse-Level

Linear
Cluster

50 100 150 200 250 300
Compression Ratio

75

80

85

90

95

P
S

N
R

Fine-Level

Linear
Cluster

Optimization of SZ-L/R: (1) SLE

• Challenge 1: Low prediction accuracy on AMR data
• Merged unit blocks may not be adjacent in the original dataset, resulting in poor

data smoothness between these non-neighboring blocks

• Directly compress each unit block individually?
• No, since SZ will use lots of Huffman trees to encode these blocks separately

• Result in low encoding efficiency à low compression ratio

• Solution 1: Improve prediction using unit Shared Lossless Encoding (SLE)

• Separate prediction of unit blocks while encoding them together

• Each unit block is predicted and quantized individually

• The quantization codes from each unit block are combined to create a shared Huffman
tree and then encoded

1/3/24 14

Optimization of SZ-L/R: (1) SLE

• Solution 1: Improve prediction using unit Shared Lossless Encoding (SLE)

• Separate prediction of unit blocks while encoding them together

• Reduces overall compression error à improvement in rate-distortion

1/3/24 15

Vis comparison (one slice) of abs compression errors of
unit SLE (left, CR = 91.4) and original linear merging
(right, CR = 86.1). Bluer means higher compression error

Rate-distortion comparison between LM (original SZ) and SLE

50 100 150 200 250 300
Compression Ratio

80

85

90

95

100

P
S

N
R

Fine-level

Adp-4
SLE
LM
1D

0 128 256 384 512

0

128

256

384

512

SLE
0 128 256 384 512

0

128

256

384

512

Linear Merging

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09 3.5e+09

0 128 256 384 512

0

128

256

384

512

SLE
0 128 256 384 512

0

128

256

384

512

Linear Merging

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09 3.5e+09

0 128 256 384 512

0

128

256

384

512

SLE
0 128 256 384 512

0

128

256

384

512

Linear Merging

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09 3.0e+09 3.5e+09

Optimization of SZ: (2) Adaptive SZ-L/R

• Challenge 2: SLE may produce undesirable residues

• SZ_L/R compressor will truncate the input data into 6×6×6 blocks

• When using unit SLE, the SZ_L/R will further partition unit blocks using 6×6×6 block

• The unit block size of AMR data is 2!

• Might produce blocks that are difficult to compress

1/3/24 16

Example of the original partition of SZ_L/R on a
unit block with the size of 8×8×8; the gray boxes
represent data that are difficult to compressWhen unit block size = 8, SLE cannot dominate baseline

20 30 40 50 60 70 80 90
Compression Ratio

35

40

45

50

P
S

N
R

Coarse-Level

Adp-4
SLE
LM
1D

• Solution 2: SZ_L/R with adaptive block size

1/3/24 17

0 64 128 192 256

0

64

128

192

256

Adaptive Block Size
0 64 128 192 256

0

64

128

192

256

SLE

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09

4×4×4, if unitBlkSize mod 6 ≤ 2;
6×6×6, if unitBlkSize mod 6 > 2;
6×6×6, if unitBlkSize ≥ 64

SZ_BlkSize =

When unit block size = 8, SLE cannot dominate baseline

20 30 40 50 60 70 80 90
Compression Ratio

35

40

45

50

P
S

N
R

Coarse-Level

Adp-4
SLE
LM
1D

Example of the original partition and adaptive partition of
SZ_L/R on a unit block with the size of 8×8×8; the gray
boxes represent data that are difficult to compress

0 64 128 192 256

0

64

128

192

256

Adaptive Block Size
0 64 128 192 256

0

64

128

192

256

SLE

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09

0 64 128 192 256

0

64

128

192

256

Adaptive Block Size
0 64 128 192 256

0

64

128

192

256

SLE

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09

Compression errors of
SLE and Adp block size
Bluer means higher
compression error

Optimization of SZ: (2) Adaptive SZ-L/R

• AMRIC’s optimized SZ_L/R notably enhances the visualization quality of AMR data

1/3/24 18

. . .

.

.

.

. . .

.

.

.

Original data Original SZ_L/R, CR =51.7 AMRIC SZ_L/R, CR =53.2

Vis comparison (one slice) of ori data and decompressed data produced by original SZ_L/R and AMRIC’s SZ_L/R
on Nyx. Warmer colors indicate higher values. The white lines denote the boundaries between AMR levels.

Optimization of SZ: Overall Vis Improvement

. . .

.

.

.

H5 Compression Filter Modification

• HDF5 natively supports data compression filters such as H5Z-SZ
• Allows chunked data to pass through compression filters on the way to the disk

• Data can be compressed using a compression filter during the write operation

• Challenge: How to select the optimal chunk size for compression filters
• Too small à low compression ratio & I/O perf

• We want a large chunk size!

• Feature of AMR data is perverting us to use a large chunk

• Change AMR data layout, modify filter mechanism

1/3/24 19

Load Imbalance for AMR Data

• Challenge 1: AMR data layout issue for multiple fields

• AMReX divides each AMR level’s domain into boxes

• Each box typically contains data from multiple fields.

• Data of one field in different boxes are stored separately

• Need to set a chunk size for the compression filter

• The compression filter then processes the data chunk by chunk

• Result in small chunk size thus low compression ratio & I/O performance

1/3/24 20

HDF5 chunk size cannot exceed the
size of the smallest box (i.e., Box-1)

Load Imbalance for AMR Data

• Solution 1: Change data layout

• Alter the loop access order when reading the data into the buffer, adds minimal overhead

• Rather than reorganizing the buffer itself

• Increase chunk size thus enhance both the compression and I/O performance

1/3/24 21

Larger chunk size that can compress
the entire physical field together

Modification of HDF5 Compression Filter

• Challenge 2: entire HDF5 dataset must use the same chunk size

• Difficult to select an optimal global chunk size in parallel scenario

• Data size on each MPI rank vary

• Simply set 𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 = max(𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒) ?

• No, result in size overhead

• Let each rank write its data to its own dataset?

• No, result in serial write due to the collective write

• Solution 2: Modify the HDF5 filter mechanism

• Still use 𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 = max(𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒)

• But we will provide the real data size (the dashed pink box) of each rank to the filter

1/3/24 22

• Two real-world AMR applications:

• Nyx cosmology simulation

• WarpX Particle-In-Cell (PIC) simulation

• Test platform: Summit supercomputer

• Use up to 128 nodes and 4096 CPU cores;

1/3/24 23

Runs #AMR Lvls #Nodes
(#MPI ranks)

Grid size of each level
(coarse to fine)

Density of each lvl
(coarse to fine)

Data size
(per timestep)

Error Bound
(AMRIC & AMReX)

WarpX_1 2 2 (64) 256*256*2048, 512*512*4096 98.04%, 1.96% 12.4 GB 1E-3, 5E-3

WarpX_2 2 16 (512) 512*512*4096, 1024*1024*8192 98.04%, 1.96% 99.3 GB 1E-3, 5E-3

WarpX_3 2 128 (4096) 1024*1024*8192, 2048*2048*16384 98.96%, 1.04% 624 GB 1E-4, 5E-4

Nyx_1 2 2 (64) 256*256*256, 512*512*512 98.6%, 1.4% 1.6 GB 1E-3, 1E-2

Nyx_2 2 16 (512) 512*512*512*, 1024*1024*1024 96.67%, 3.23% 12 GB 1E-3, 1E-2

Nyx_3 2 128 (4096) 1024*1024*1024, 2048*2048*2048 98.3%, 1.7% 97.5 GB 1E-3, 1E-2

WarpX

Nyx
Evaluation Setup

Evaluation on Compression Ratio

• Up to 81× CR improvement over the ori AMReX’s compression solution

1/3/24 24

Runs AMReX (SZ_L/R) AMRIC (SZ_L/R) AMRIC (SZ_Interp)
WarpX_1 16.4 267.3 482.1

WarpX_2 117.5 461.2 2406.0

WarpX_3 29.6 949.0 4753.7

Nyx_1 8.8 15.0 14.0

Nyx_2 8.8 16.6 14.2

Nyx_3 8.7 16.3 13.6

Comparison of compression ratio with AMReX’s original compression and AMRIC

Evaluation on Reconstruction Data Quality

• Data quality of AMRIC is also higher than that of AMReX

1/3/24 25

Vis (one slice) of compression errors of our AMRIC (left) and AMReX’s
compression (right) on Nyx. Bluer means higher compression error

0 128 256 384 512

0

128

256

384

512

AMRIC-SZ-L/R

0 128 256 384 512

0

128

256

384

512

AMReX

0.0e+005.0e+081.0e+091.5e+092.0e+092.5e+093.0e+093.5e+09

Evaluation on Reconstruction Data Quality

• Data quality (PSNR) of AMRIC is also higher than that of AMReX

1/3/24 26

Comparison of reconstruction data quality (in PSNR) with AMReX’s original compression and AMRIC

Runs AMReX (SZ_L/R) AMRIC (SZ_L/R) AMRIC (SZ_Interp)
WarpX_1 52.5 66.8 66.5

WarpX_2 56.7 69.1 68.9

WarpX_3 54.9 68.3 68.0

Nyx_1 73.6 80.3 79.9

Nyx_2 78.5 83.8 88.7

Nyx_3 82.5 97.9 103.1

Ours
Compression
Ratio = 23.9

AMReX
Compression
Ratio = 19.0

Original
Data

Evaluation on Reconstruction Data Quality

Evaluation on I/O Time

• Up to 10.5× I/O performance improvement over the non-compression solution.

• Up to 39× over the original AMReX’s compression solution

1/3/24 28

256 512 1024

100

101

102

Ti
m

e
(S

ec
on

ds
)

NoComp

256 512 1024

AmReX

256 512 1024

AMRIC (SZ-L/R)

256 512 1024

AMRIC (SZ-Interp)

I/O time
Prep.

Nyx: Write-Time Breakdown

512 1024 2048

100

101

102

Ti
m

e
(S

ec
on

ds
)

NoComp

512 1024 2048

AmReX

512 1024 2048

AMRIC (SZ-L/R)

512 1024 2048

AMRIC (SZ-Interp)

I/O time
Prep.

WarpX: Write-Time Breakdown

Conclusion

• Propose insitu AMR compression AMRIC and integrating it into the AMReX

• Design a compression-oriented in situ pre-processing workflow for AMR data

• Optimize the SOTA SZ lossy compressor for AMR data

• Efficiently utilizing the HDF5 compression filter on AMR data

• Compared to the non-compression sol: up to 10.5× I/O performance improvement

• Compared to AMReX’s compression sol: up to 39× I/O improvement over & up to
81× compression ratio improvement with better data quality

1/3/24 29

Thank you!

Contact: daocwang@iu.edu
ditao@iu.edu

1/3/24 30

Questions are welcome!

