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Background: AMR

• Introduction to AMR

• Each mesh represents a value of an area.

• Smaller mesh à higher resolution

• Change the mesh (spatial resolution) based on the 
level of refinement needed by the simulation, use 
finer mesh in “more important” region.

• Achieve the desired accuracy as well as increase 
computational and storage savings.

• Result in hierarchical data with different resolutions

• One of the most widely used frameworks for HPC 
applications
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https://www.cttc.upc.edu/?q=node/165
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Background: AMR

• Example of AMR

• A mesh will be refined when its value (e.g., density/velocity) meets refinement criteria (i.e., 
greater than the threshold)

1/3/24 4

Meet refinement criteria_1

Meet refinement criteria_2



Background: AMR

• Example of AMR

• The grid structure changes with the universe’s evolution

• The dashed boxes indicate different resolutions within one timestep 
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Vis of three key timesteps (zoom in) of a cosmology simulation



Different Types of AMR

• Tree-based AMR

• Organizes the grids as leaves and has no 
redundant data across different levels

• More complex and time-consuming to 
perform visualization and analysis

• Patch-based AMR

• Saves the data that will be refined at the 
fine level in the coarse level redundantly

• The redundant coarse data will not be 
used in post-analysis and vis

• We focus on patch-based AMR AMReX

• We discard the redundant coarse data 
while doing the compression 
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Motivation: Why Compression

• Even with AMR, the size of data generated by apps could still be prodigious 
• E.g., Nyx non-AMR dataset 4096^3 * 10 = 5TB (only for one snapshot)

• AMR dataset: 50% full resolution, 50% half resolution à 2.8TB

• Will take a single node at Summit for 2.8TB/2.1 GB/s = 22 mins 

• Trend of Supercomputing Systems
• The compute capability is developed much faster than storage bandwidth: a widening gap

• between compute unit and storage bandwidth (PF–SB), or

• between main memory size and storage bandwidth (MS–SB)
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PF: peak FLOPS     * when using burst buffer      ** counting only DDR4 Source: F. Cappello (ANL)

supercomputer year class PF MS SB MS/SB PF/SB

Cray Jaguar 2008 1 PFLOPS 1.75 PFLOPS 360 TB 240 GB/S 1.5k 7.3k

Cray Blue Waters 2012 10 PFLOPS 13.3 PFLOPS 1.5 PB 1.1 TB/S 1.3k 13k

Cray CORI 2017 10 PFLOPS 30 PFLOPS 1.4 PB 1.7 TB/S* 0.8k 17k

IBM Summit 2018 100 PFLOPS 200 PFLOPS >10 PB** 2.5 TB/S >4k 80k

FRONTIER 2023 1 exaFLOPS 1680 PFLOPS 39 PB ~7.5 TB/S 5.2K 224k



Background: Compression

• Lossy compression on scientific data
• Offers much higher compression ratios than lossless 

compression by trading a little bit of accuracy

• Traditional lossy compressors (JPEG) are designed for 
images (int) à bad performance on scientific data 
(floating-point data)

• New generation of lossy compressors:

• SZ (Prediction based), nice compression ratio

• SZ-Lor/Reg (faster); SZ-Interp (higher ratio)

• ZFP (Transform based), high throughput

• TThresh (HOSVD based ), works nice in 3d but slow
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Lorenzo predictor 
(SZ-Lor/Reg)

HOSVD 
(TThresh)

Spline interpolation (SZ-Interp)

Error-Controlled Lossy Compression Optimized for High Compression Ratios of Scientific Datasets

TTHRESH: Tensor Compression for Multidimensional Visual Data 

Fixed-Rate Compressed Floating-Point Arrays

111111111111111
TTHRESH:%20Tensor%20Compression%20for%20Multidimensional%20Visual%20Data
Fixed-Rate%20Compressed%20Floating-Point%20Arrays


• zMesh [Luo et al., IPDPS’21]

• Preprocess and leverage the data redundancy across different AMR levels.

• Compress the 2/3D data in 1D à cannot leverage higher-dimension compression

• TAC  [Wang et al., HPDC’22]

• Improve zMesh’s compression quality through adaptive 3D compression

• 3.3x higher compression ratio under the same data distortion

SOTA AMR Compression
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original 1d data

reordered 1d data
2d AMR data layout



Use in situ Compression with Simulation

• zMesh, TAC are not suitable for in situ compression 

• zMesh requires extra communication for reordering in parallel scenarios

• TAC requires the reconstruction of the entire domain’s hierarchy

• Result in significant overhead for in parallel scenarios

• In situ compression could save time & enhance I/O efficiency 

• Compressing data during the application’s runtime

• Offline: app write ori data to disk à SZ read ori data à SZ write compressed data to disk

• In situ: app directly writes compressed data to disk 

• AMReX framework supports in situ AMR data compression (SZ)

• Only compresses the data in 1D à low compression quality

• Cannot effectively utilize the HDF5 filter à low CR and I/O performance
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AMRIC 

• AMRIC: First In Situ Lossy Compression Framework for AMR Applications

• Improve both I/O efficiency and boost compression perf for AMR applications

• Overview

• Compression-oriented preprocessing workflow for 3D AMR data compression

• Optimize the state-of-the-art SZ lossy compressor’s efficiency on AMR data

• Overcome the gap between the HDF5 and AMR applications
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Integrated into AMReX 
and can be easily 
deployed to AMReX’s app



Prepossessing of AMR Data

• Remove redundancy 

• The coarsest lvl_0 overlaps with the finer lvl_1; lvl_1 overlaps with the finest lvl_2 

• The redundant coarse regions can be removed to save space

• Challenge: irregular shapes for 3D compression

• Use uniform partition to rearrange the boxes into a collection of unit blocks 

• Reorganizing blocks based on different compressors to improve compression performance
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Prepossessing of AMR Data

• For SZ_L/R, we simply linearize the partitioned unit blocks for high-speed

• For SZ_Interp, we cluster the unit blocks for better compression performance 

• SZ_Interp will perform global interpolation for all 3 dimensions of the entire dataset

• Cluster the unit blocks to balance the interpolation process across multiple dimensions
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Rate-distortion comparison 
between linear and cluster 
arrangements across 
different levels for SZ_Interp 
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Optimization of SZ-L/R: (1) SLE

• Challenge 1: Low prediction accuracy on AMR data
• Merged unit blocks may not be adjacent in the original dataset, resulting in poor 

data smoothness between these non-neighboring blocks

• Directly compress each unit block individually?
• No, since SZ will use lots of Huffman trees to encode these blocks separately

• Result in low encoding efficiency à low compression ratio

• Solution 1: Improve prediction using unit Shared Lossless Encoding (SLE)

• Separate prediction of unit blocks while encoding them together

• Each unit block is predicted and quantized individually

• The quantization codes from each unit block are combined to create a shared Huffman 
tree and then encoded
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Optimization of SZ-L/R: (1) SLE

• Solution 1: Improve prediction using unit Shared Lossless Encoding (SLE)

• Separate prediction of unit blocks while encoding them together

• Reduces overall compression error à improvement in rate-distortion
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Vis comparison (one slice) of abs compression errors of 
unit SLE (left, CR = 91.4) and original linear merging 
(right, CR = 86.1). Bluer means higher compression error

Rate-distortion comparison between LM (original SZ) and SLE
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Optimization of SZ: (2) Adaptive SZ-L/R 

• Challenge 2: SLE may produce undesirable residues

• SZ_L/R compressor will truncate the input data into 6×6×6 blocks

• When using unit SLE, the SZ_L/R will further partition unit blocks using 6×6×6 block

• The unit block size of AMR data is 2!

• Might produce blocks that are difficult to compress
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Example of the original partition of SZ_L/R on a 
unit block with the size of 8×8×8; the gray boxes 
represent data that are difficult to compressWhen unit block size = 8, SLE cannot dominate baseline
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• Solution 2: SZ_L/R with adaptive block size 
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Example of the original partition and adaptive partition of 
SZ_L/R on a unit block with the size of 8×8×8; the gray 
boxes represent data that are difficult to compress
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• AMRIC’s optimized SZ_L/R notably enhances the visualization quality of AMR data

1/3/24 18

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

.  

.  .  .  .  .  .  .  .  .  .  .  .  .   

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

.  

.  .  .  .  .  .  .  .  .  .  .  .  .   

Original data Original SZ_L/R, CR =51.7 AMRIC SZ_L/R, CR =53.2

Vis comparison (one slice) of ori data and decompressed data produced by original SZ_L/R and AMRIC’s SZ_L/R 
on Nyx. Warmer colors indicate higher values. The white lines denote the boundaries between AMR levels.
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H5 Compression Filter Modification

• HDF5 natively supports data compression filters such as H5Z-SZ
• Allows chunked data to pass through compression filters on the way to the disk 

• Data can be compressed using a compression filter during the write operation

• Challenge: How to select the optimal chunk size for compression filters
• Too small à low compression ratio & I/O perf

• We want a large chunk size!

• Feature of AMR data is perverting us to use a large chunk

• Change AMR data layout, modify filter mechanism  
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Load Imbalance for AMR Data

• Challenge 1: AMR data layout issue for multiple fields

• AMReX divides each AMR level’s domain into boxes

• Each box typically contains data from multiple fields. 

• Data of one field in different boxes are stored separately

• Need to set a chunk size for the compression filter

• The compression filter then processes the data chunk by chunk

• Result in small chunk size thus low compression ratio & I/O performance
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HDF5 chunk size cannot exceed the 
size of the smallest box (i.e., Box-1)



Load Imbalance for AMR Data

• Solution 1: Change data layout

• Alter the loop access order when reading the data into the buffer, adds minimal overhead

• Rather than reorganizing the buffer itself

• Increase chunk size thus enhance both the compression and I/O performance
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Larger chunk size that can compress 
the entire physical field together



Modification of HDF5 Compression Filter

• Challenge 2: entire HDF5 dataset must use the same chunk size

• Difficult to select an optimal global chunk size in parallel scenario 

• Data size on each MPI rank vary

• Simply set 𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 = max(𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒) ?

• No, result in size overhead

• Let each rank write its data to its own dataset?

• No, result in serial write due to the collective write 

• Solution 2: Modify the HDF5 filter mechanism

• Still use 𝑐ℎ𝑢𝑛𝑘 𝑠𝑖𝑧𝑒 = max(𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒)

• But we will provide the real data size (the dashed pink box) of each rank to the filter
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• Two real-world AMR applications:

• Nyx cosmology simulation

• WarpX Particle-In-Cell (PIC) simulation

• Test platform: Summit supercomputer

• Use up to 128 nodes and 4096 CPU cores;
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Runs #AMR Lvls #Nodes
(#MPI ranks)

Grid size of each level
(coarse to fine)

Density of each lvl
(coarse to fine)

Data size
(per timestep)

Error Bound
(AMRIC & AMReX)

WarpX_1 2 2 (64) 256*256*2048, 512*512*4096 98.04%, 1.96% 12.4 GB 1E-3, 5E-3

WarpX_2 2 16 (512) 512*512*4096, 1024*1024*8192 98.04%, 1.96% 99.3 GB 1E-3, 5E-3

WarpX_3 2 128 (4096) 1024*1024*8192, 2048*2048*16384 98.96%, 1.04% 624 GB 1E-4, 5E-4

Nyx_1 2 2 (64) 256*256*256, 512*512*512 98.6%, 1.4% 1.6 GB 1E-3, 1E-2

Nyx_2 2 16 (512) 512*512*512*, 1024*1024*1024 96.67%, 3.23% 12 GB 1E-3, 1E-2

Nyx_3 2 128 (4096) 1024*1024*1024, 2048*2048*2048 98.3%, 1.7% 97.5 GB 1E-3, 1E-2

WarpX

Nyx
Evaluation Setup



Evaluation on Compression Ratio

• Up to 81× CR improvement over the ori AMReX’s compression solution
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Runs AMReX (SZ_L/R) AMRIC (SZ_L/R) AMRIC (SZ_Interp)
WarpX_1 16.4 267.3 482.1

WarpX_2 117.5 461.2 2406.0

WarpX_3 29.6 949.0 4753.7

Nyx_1 8.8 15.0 14.0

Nyx_2 8.8 16.6 14.2

Nyx_3 8.7 16.3 13.6

Comparison of compression ratio with AMReX’s original compression and AMRIC



Evaluation on Reconstruction Data Quality

• Data quality of AMRIC is also higher than that of AMReX 
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Vis (one slice) of compression errors of our AMRIC (left) and AMReX’s 
compression (right) on Nyx. Bluer means higher compression error
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Evaluation on Reconstruction Data Quality

• Data quality (PSNR) of AMRIC is also higher than that of AMReX 
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Comparison of reconstruction data quality (in PSNR) with AMReX’s original compression and AMRIC

Runs AMReX (SZ_L/R) AMRIC (SZ_L/R) AMRIC (SZ_Interp)
WarpX_1 52.5 66.8 66.5

WarpX_2 56.7 69.1 68.9

WarpX_3 54.9 68.3 68.0

Nyx_1 73.6 80.3 79.9

Nyx_2 78.5 83.8 88.7

Nyx_3 82.5 97.9 103.1



Ours
Compression 
Ratio = 23.9

AMReX
Compression 
Ratio = 19.0

Original 
Data 

Evaluation on Reconstruction Data Quality



Evaluation on I/O Time

• Up to 10.5× I/O performance improvement over the non-compression solution.

• Up to 39× over the original AMReX’s compression solution
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Conclusion

• Propose insitu AMR compression AMRIC and integrating it into the AMReX

• Design a compression-oriented in situ pre-processing workflow for AMR data 

• Optimize the SOTA SZ lossy compressor for AMR data

• Efficiently utilizing the HDF5 compression filter on AMR data

• Compared to the non-compression sol: up to 10.5× I/O performance improvement 

• Compared to AMReX’s compression sol: up to 39× I/O improvement over & up to 
81× compression ratio improvement with better data quality
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Thank you!

Contact: daocwang@iu.edu
ditao@iu.edu
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Questions are welcome!


