Concealing Compression-accelerated I/O for HPC Applications through In Situ Task Scheduling

Sian Jin
Indiana University
Bloomington, IN, USA
sianjj@iu.edu

Sheng Di
Argonne National Laboratory
Lemont, IL, USA
sdi1@anl.gov

Frédéric Vivien
Inria & LIP, ENS Lyon
Lyon, France
frederic.vivien@inria.fr

Daoce Wang
Indiana University
Bloomington, IN, USA
daocwang@iu.edu

Yves Robert
Inria & LIP, ENS Lyon
Lyon, France
yves.robert@inria.fr

Dingwen Tao
Indiana University
Bloomington, IN, USA
ditao@iu.edu

Franck Cappello
Argonne National Laboratory
Lemont, IL, USA
cappello@mcs.anl.gov

Abstract

Lossy compression and asynchronous I/O are two of the most effective solutions for reducing storage overhead and enhancing I/O performance in large-scale high-performance computing (HPC) applications. However, current approaches have limitations that prevent them from fully leveraging lossy compression, and they may also result in task collisions, which restrict the overall performance of HPC applications. To address these issues, we propose an optimization approach for the task scheduling problem that encompasses computation, compression, and I/O. Our algorithm adaptively selects the optimal compression and I/O queue to minimize the performance degradation of the computation. We also introduce an intra-node I/O workload balancing mechanism that evenly distributes the workload across different processes. Additionally, we design a framework that incorporates fine-grained compression, a compressed data buffer, and a shared Huffman tree to fully benefit from our proposed task scheduling. Experimental results with up to 16 nodes and 64 GPUs from ORNL Summit, as well as real-world HPC applications, demonstrate that our solution reduces I/O overhead by up to 3.8x and 2.6x compared to non-compression and asynchronous I/O solutions, respectively.

CCS Concepts: • Software and its engineering → Scheduling; • Theory of computation → Data compression.

Keywords: HPC, parallel I/O, data compression, task scheduling, performance.

ACM Reference Format:

1 Introduction

Large-scale scientific simulations on HPC systems play a crucial role in various scientific and engineering domains. These simulations often generate massive volumes of data that requires significant storage resources. For example, a single Nyx [3] cosmological simulation with a resolution of 4096 × 4096 × 4096 cells generates up to 2.8 TB of data for a single snapshot; a total of 2.8 PB of disk storage is needed, assuming the simulation is run 5 times with 200 snapshots dumped per simulation. Managing such large amounts of data is a major challenge. It is impractical to save all the generated raw data to disk due to: (1) the limited storage capacity even for supercomputers, and (2) the time required to save all the produced data (about 1 hour) due to the limitation of I/O bandwidth: at best 1 TB/s (on ORNL Summit) [12, 57, 58, 60].

Lossy compression has been identified as one of the major data reduction techniques to address this issue. Specifically, a new generation of error-bounded lossy compression techniques, such as SZ [15, 37, 50], ZFP [40], MGARD [1], and their GPU versions [13, 34, 54], have been widely used in the scientific community [12, 15, 22, 28, 37, 40–42, 50, 52]. Compared to lossless compression, which provides up to a 2x compression ratio on scientific data [46], error-bounded lossy compressors offer a much higher compression ratio (16x to more than 200x for the applications considered in this paper) while maintaining controllable loss of accuracy.

Scientific applications typically use parallel I/O libraries such as the Hierarchical Data Format 5 (HDF5) [53] for reading and storing their data. Specifically, HDF5 is lauded for its high parallel I/O performance, data portability, and rich APIs for managing data on various systems. It is widely used at supercomputing facilities for storing, reading, and...
task scheduling efficiency. The compressed data buffer enables the overlapping of compression and I/O tasks, while the shared Huffman tree minimizes the overhead associated with building the Huffman tree for compressing small data blocks. To the best of our knowledge, unlike previous works that have only addressed the overlap between computation and I/O operations through asynchronous I/O [30, 62], this is the first attempt to simultaneously conceal both the compression and I/O operations from computation, thereby significantly improving the performance of HPC applications. While this work primarily focuses on HPC systems and applications, the methodology of overlapping compression, I/O, and computation can be extended to other systems, such as Cloud computing and datacenter systems. By predicting/assessing the compression performance and I/O bandwidth on these platforms, our solution could be relevant to a wider range of data-intensive, iterative applications.

The main contributions of this paper include:

- We propose to overlap both compression and I/O with computation, including task scheduling algorithms designed to efficiently integrate compression and I/O into computation with minimal interference to the system.
- We propose workflows that include three components aimed at improving end-to-end performance and task scheduling efficiency: fine-grained compression, a compressed data buffer, and a shared tree for Huffman coding.
- We discuss the implementation of our proposed framework in both simulation and real-world scientific applications to provide detailed insights.
- Evaluation of our solution on two real-world HPC applications, utilizing up to 16 nodes and 64 GPUs from the Summit supercomputer, demonstrates a reduction in I/O overhead by up to 3.8× over the baseline solution without asynchronous I/O or compression, and 2.6× over the previous asynchronous I/O only solution.

The remainder of this paper is organized as follows. In Section 2, we introduce the research background. In Section 3, we formulate the task scheduling problem considering compression, I/O, and computation, and present the solution algorithms. In Section 4, we present our proposed framework that integrates lossy compression with parallel I/O libraries. In Section 5, we present our evaluation results. In Section 6, we conclude the paper and discuss future work.

2 Background

In this section, we introduce background knowledge about parallel I/O libraries, such as HDF5, error-bounded lossy compression, and their use in scientific applications.

2.1 Parallel I/O Libraries for HPC Applications

Scientific applications generate and analyze massive amounts of data. These applications critically require the ability to efficiently access and manage this data on HPC systems.
Given the complex storage hierarchy, including node-local persistent memory, burst buffers, and disk-based storage, parallel I/O becomes the key technology that enables efficient data movement between compute nodes and storage. For instance, HDF5 [53], netCDF [36], and the Adaptable IO System (ADIOS) [21] are among the most widely used high-performance I/O libraries for HPC applications. However, these I/O libraries often struggle to handle extremely large files (e.g., with aggregate scale of petabytes and beyond) due to the inevitably limited I/O bandwidth. Consequently, compression techniques are frequently adopted to reduce the data size [47]. For example, HSZ-SZ [14] is a data filter that integrates SZ compression into HDF5.

Given HDF5’s wide acceptance in the scientific community as a system supporting parallel I/O, we primarily focus our performance evaluation on HDF5, without loss of generality. Moreover, to improve performance and productivity, a recent release of HDF5 [9] implements a Virtual Object Layer (VOL), which can redirect I/O operations to the VOL connector and enable asynchronous I/O [49]. This feature allows an application to overlap I/O with other operations, such as compression. Therefore, we can leverage this capability to deeply integrate and overlap predictive lossy compression with parallel write operations, thereby improving parallel write performance. Furthermore, we focus on parallel writing to a large shared file due to three main factors: (1) It is a common usage of HDF5 because it reduces the workload for scientists in managing multiple files for storage, post-hoc analysis, and visualization. (2) It minimizes the performance overhead of opening/closing multiple files and the storage overhead of metadata for numerous small files. (3) Partial processes (e.g., up to 4,096 processes in [10]) of an HPC application with subfiling still write to a shared file.

2.2 Error-Bounded Lossy Compression

Compression is a widely utilized technique in various systems and frameworks for reducing data sizes and enhancing performance [17, 26, 31, 59]. Compared to lossless compression, lossy compression can compress data with extremely high compression ratios by losing non-critical information in the reconstructed data. The two most important metric types to evaluate the performance of lossy compression are: (1) compression ratio, i.e., the ratio between original data size and compressed data size, or bit-rate, i.e., the number of bits on average for each data point (e.g., 32/64 for single/double-precision floating-point data) before compression; and (2) data distortion metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) to measure the reconstructed data quality compared to the original data. In recent years, a new generation of high-accuracy lossy compressors for scientific data has been proposed and developed for scientific floating-point data, such as SZ [15, 37, 50] and ZFP [40]. These lossy compressors provide parameters that allow users to control the loss of information due to lossy compression precisely. Unlike traditional lossy compressors such as JPEG [56] which are designed for images (in integers), SZ and ZFP are designed to compress floating-point data and can provide a strict error-controlling scheme based on user’s requirements. Generally, lossy compressors provide multiple compression modes, such as the error-bounding mode. The error-bounding mode requires users to set an error type, such as point-wise absolute error bound, and a bound value (e.g., 10^{-3}). The compressor ensures that differences between original and reconstructed data do not exceed the error bound.

Specifically, SZ is a prediction-based, error-bounded lossy compressor designed for scientific data. It involves three main steps: (1) Each data point’s value is predicted based on its neighboring points, using an adaptive, best-fit prediction method. (2) The difference between the actual value and the predicted value is quantized, based on the user-set compression mode and error bound. (3) Customized Huffman coding and additional lossless compression are applied to achieve a high compression ratio.

Prior work has studied the impact of lossy compression on the quality of reconstructed data and post-hoc analysis, providing guidelines on how to set compression configurations for specific applications [16, 28, 29, 37, 38, 51]. For instance, a comprehensive framework was developed to conduct a systematic analysis of compression configurations with a given dataset, providing the best-fit solution that satisfies post-hoc analysis requirements [22]. Moreover, Jin et al. [27] proposed a theoretical ratio-quality model to efficiently maximize the compression ratio given the quality constraints of post-hoc analysis. Note that, as in previous work [63] on improving communication efficiency via lossy compression, this study assumes that the compression configuration is set up by users based on their data quality requirements. Therefore, the aforementioned compression configuration methods are orthogonal to our solution.

2.3 I/O-intensive Scientific Applications

In this paper, without loss of generality, we primarily focus on two I/O-intensive scientific applications—Nyx [2] and WarpX [19], which have been used in numerous previous I/O studies [4–6, 11, 24, 33]. These scientific simulations generally follow an iterative process, with variable durations. Notably, neighboring iterations frequently exhibit high similarity in their durations, enabling us to predict the resource utilization pattern of the current simulation iteration based on past iterations. We introduce them in detail as follows.

Nyx is an adaptive mesh, hydrodynamics code designed to model astrophysical reacting flows on HPC systems [2, 3]. This code models dark matter as discrete particles moving under the influence of gravity. The fluid in gas-dynamics is modeled using a finite-volume methodology on an adaptive set of 3-D Eulerian grids/meshes. The mesh structure is used to evolve both the fluid quantities and the particles via a
particle-mesh method. For parallelization, Nyx uses MPI for the long-range force calculation and architecture-specific programming language for the short-range force algorithms, such as OpenMP and CUDA. Nyx uses multiple 3-D arrays to represent field information in grid structure. According to prior studies [2, 23, 45], it can run up to tens of thousands of GPUs on leadership supercomputers such as Summit [18].

WarpX is a highly-parallel and highly-optimized code that utilizes AMReX [61], runs on GPUs and multi-core CPUs, and features load-balancing capabilities. WarpX can scale up to the world’s largest supercomputer and was the recipient of the 2022 ACM Gordon Bell Prize [43].

3 Task Scheduling with Lossy Compression

Unlike previous works that can only overlap two of the three components [30, 62] among compression, I/O, and computation, our solution leverages task scheduling techniques and runtime system designs to efficiently conceal both the compression and I/O operations from computation in HPC applications. In this section, we present a comprehensive approach to task scheduling that considers all compression, I/O, and computation. First, we define the problem and highlight the challenges encountered when optimizing task scheduling under the constraints that arise with data compression. Next, we recall the known complexity results. Then we introduce our proposed scheduling algorithms to determine the most efficient execution sequence for compression and I/O tasks, while maintaining high computational performance. Lastly, we discuss a technique to balance the I/O workload between processes, thereby enhancing overall system efficiency.

3.1 Problem Formulation

Data compression is one of the most effective approaches for reducing data size and mitigating I/O bottlenecks in HPC applications. Likewise, the use of asynchronous I/O from parallel I/O libraries can significantly enhance end-to-end performance by overlapping I/O operations with computations. Regrettably, these two techniques are not yet well-integrated, meaning we can only benefit from one method at a time. Although compression can be considered part of the computation, and its execution can be overlapped with I/O, no previous studies have proposed a comprehensive task scheduling approach that incorporates compression, I/O, and computation together. Therefore, before designing our task scheduling algorithm and proposing our framework design, we first formulate the problem that asynchronously executes data compression and I/O with respect to computation.

In this work, we target parallel scientific applications running on HPC systems. Inter-process optimizations will be addressed in Section 3.4. Moreover, we focus on HPC applications that are iterative. Typically, either an initial solution is refined iteratively or a dynamic simulation is performed where each iteration computes the state of the system at a different date.

Let us consider iteration n in such a process. Let $I_n = [\text{beg}_n, \text{end}_n]$ denote the time interval during which this iteration is executed. The length of this iteration is then $T_n = \text{end}_n - \text{beg}_n$. During each iteration, the HPC application is executing a series of tasks on both CPU and GPU. Usually, each node operates multiple processes, with each process assigned to a dedicated GPU along with a subset of CPU cores. (In well-optimized HPC applications, these processes can utilize the majority of CPU cores). Within each process, there are multiple threads: one associated with the GPU (for computation) and others with the CPU cores (for computation/compression/I/O). Parallel I/O operations are collaboratively executed by the background thread in each process. It is also common for the application to perform a number of I/O operations before or after some computation. We ignore the GPU and concentrate on the computing and compression tasks performed by the CPU, and on the background thread.

We assume that for each iteration, there are k computing tasks, $Y_{n,1}, \ldots, Y_{n,k}$, executed by the CPU. Interference with these computing tasks would directly delay the execution of the application. The i-th task, $Y_{n,i}$, begins its execution at time $\text{beg}_n + a_{n,i}$ and ends at time $\text{beg}_n + b_{n,i}$, for $1 \leq i \leq k$.

Periodically, either at each iteration, or every l iterations for some fixed value l, the application generates a large amount of data that needs to be written to the storage system. To reduce I/O overhead and storage footprint, we apply lossy compression to these data. A process is responsible for managing a certain number of data fields, and each of these fields undergoes our proposed fine-grained compression. This decomposition divides the compression into a total of m independent compression tasks for the given process, as detailed in Section 4. All iterations that execute compression tasks comprise m compression tasks that need to be executed on the main-thread, namely tasks $R_{n,1}, \ldots, R_{n,m}$ for iteration n. Compression task $R_{n,j}$ has a duration $c_{n,j}$, for $1 \leq j \leq m$. Task scheduling must ensure that the m compression tasks are inserted within the time period $[\text{beg}_n, \text{end}_n]$ without interfering with any of the computing tasks $Y_{n,1}, \ldots, Y_{n,k}$. In particular, this means that the execution of each task $Y_{n,i}$ should start and end at the same times whether we perform lossy compression (execution of tasks $R_{n,1}, \ldots, R_{n,m}$) or not. Otherwise, the original computing tasks would be interrupted by compression, which would delay the execution of the application. Moreover, any compression task $R_{n,j}$ that was started before a task Y_i must be completed before Y_i starts (in other words, a compression task cannot be preempted). The scheduling of the compression tasks is therefore quite constrained. However, we have absolute freedom on the order in which the m compression tasks are executed. The scheduler will therefore have to choose an execution order of compression tasks that optimizes the overall performance.

Each compression task $R_{n,j}$ is followed by a corresponding I/O task $B_{n,j}$ of length $c'_{n,j}$ that writes the compressed data.
We assume that the I/O operations and communications of the application all occur on the background thread. For iteration \(n \), these \(m \) I/O tasks must then be scheduled within the time interval \([\text{beg}_n, \text{end}_n]\) on a background thread. By construction, these tasks are separated from, and cannot interfere with neither the computing tasks (the \(Y_{n,i} \)'s) nor the compression tasks (the \(R_{n,j} \)'s). However, there are \(o \) core tasks \(G_{a,1}, \ldots, G_{a,o} \) which are executed on the background thread. Note that these tasks can be either I/O operations or communications. Like the computing tasks \(Y_{n,1}, \ldots, Y_{n,k} \), these tasks have known execution intervals that must be respected when scheduling the I/O tasks. Any interference or re-allocation of these tasks would directly cause delays in the simulation. Namely, task \(G_{n,i} \) must be executed during the time interval \([\text{beg}_n + a'_{n,i}, \text{end}_n + b'_{n,i}]\). Similarly to the compression tasks \(R_{n,1}, \ldots, R_{n,m} \), the \(m \) I/O tasks \(B_{n,1}, \ldots, B_{n,m} \) must be scheduled within the interval \([\text{beg}_n, \text{end}_n]\) without interfering with any core task \(G_{n,i} \). Specifically, the execution of an I/O task cannot be preempted and should not overlap with any interval \([\text{beg}_n + a'_{n,j}, \text{beg}_n + b'_{n,j}]\), for \(1 \leq j \leq o \). However, I/O tasks have an additional constraint. An I/O task \(B_{n,i} \) cannot start before the corresponding compression task \(R_{n,i} \) has finished. This is because the I/O operation on compressed data must occur after the data has been compressed. The execution order of the I/O tasks \(B_{n,1}, \ldots, B_{n,m} \) can also be freely adjusted to optimize overall performance, as long as all constraints are satisfied.

In essence, we can summarize all these constraints as follows (refer to Figure 1 for an example): On the compute thread, the compute (yellow) tasks \(Y_{n,i} \) are immovable obstacles that the compression (red) tasks must avoid. Similarly, on the background thread, the core (green) tasks \(G_{n,j} \) are immovable obstacles that the I/O (blue) tasks must avoid. The two threads are interdependent, as an I/O (blue) task cannot start until the corresponding compression (red) task completes. This is the only constraint on the order of compression and I/O tasks, which can otherwise be scheduled in any order compatible with these dependence constraints.

The goal of the task scheduling algorithm is to find an ordering for compression tasks \(R_{n,1}, \ldots, R_{n,m} \) and for I/O tasks \(B_{n,1}, \ldots, B_{n,m} \) to minimize the overall execution time of the current iteration. This execution time is defined as:

\[
T_{\text{overall}}^n = \min \left\{ T_n, \max_{1 \leq i \leq m} \text{tend}(R_{n,i}) - \text{beg}_n, \max_{1 \leq i \leq m} \text{tend}(B_{n,i}) - \text{beg}_n \right\}
\]

where \(\text{tend}(X) \) denotes the completion time of task \(X \). Since an I/O task must always occur after the corresponding compression task, \(\text{tend}(B_{n,i}) \) is always larger than \(\text{tend}(R_{n,i}) \). This simplifies \(T_{\text{overall}}^n \) to \(\min \left\{ T_n, \max_{1 \leq i \leq m} \text{tend}(B_{n,i}) - \text{beg}_n \right\} \).

The scheduling problem is now formally defined. The optimization problem depends on many task lengths and dates, namely the values of all variables \(a_{n,i}, b_{n,i}, c_{n,i}, a'_{n,j}, b'_{n,j}, c'_{n,j} \)’s. The objective is to minimize the iteration length \(T_{\text{overall}}^n \). Based on our observations, we assume that the execution pattern is highly similar between consecutive iterations for iterative scientific applications. Therefore, for scheduling the \(n \)-th iteration we will use the recorded characteristics of the \((n-1)\)-th iteration. Namely, we will assume that, for \(1 \leq i \leq k \), \(a_{n,i} = a_{n-1,i} \) and \(b_{n,i} = b_{n-1,i} \), that for \(1 \leq i \leq o \), \(a'_{n,j} = a'_{n-1,j} \) and \(b'_{n,j} = b'_{n-1,j} \), and that \(T_n = T_{n-1} \). The duration \(c_{n,j} \) of compression task \(R_{n,j} \) can be accurately predicted based on the data to be compressed, for \(1 \leq j \leq m \). Hence, this information is available before scheduling tasks and there is no need to re-use past data for the \(c_{n,j} \)’s.

It is important to note that slight variations in the required task lengths and dates between neighboring iterations may result in some performance degradation, as the proposed task scheduling approach takes imperfect data as its input. However, as we will demonstrate in the evaluation section, these variations do not significantly impact the effectiveness of the proposed solution.

3.2 Problem Analysis

Following scheduling theory nomenclature, the problem of scheduling the compression and I/O tasks is a flow-shop problem with two machines. The first machine corresponds to the computation thread and the second machine corresponds to the background thread. Each job of the flow-shop formulation comprises first a compression task that must be scheduled on the first machine and then an I/O task that must be executed on the second machine and can start only after the completion of the first task. More precisely, our problem is exactly a flow-shop problem with two machines with deterministic unavailability intervals on both machines and with non resumable jobs. The unavailability intervals are said to be deterministic because their existence and dates are known in advance. In practice, however, the predictions related to the dates and durations of the unavailability intervals, and on the durations of compression and I/O tasks, will be imperfect. Therefore, the proposed solutions should tolerate some variability with minimal performance degradation. A job is said to be resumable [35] if its execution can continue after an unavailability interval whenever it was started but not completed before the start of this unavailability interval.

The flow-shop problem with two machines, in the absence of unavailability intervals, is optimally solved by Johnson’s greedy algorithm [32]. Unavailability intervals change the complexity. Indeed, the problem with non resumable jobs becomes NP-complete as soon as there is at least one unavailability interval on one machine [35]; it becomes non-approximable by any constant factor (unless \(P=NP \)) as soon as there are at least two unavailability intervals on one machine [8].
We present in this section six different scheduling algorithms whose compression task is not longer than its I/O task. Now which have an execution time on the first machine smaller than or equal to their execution time on the second machine.

(ii) with backfilling; or (iii) with exhaustive insertion. The ILP. We provide the ILP formulation in the Appendix for completeness. However, it is important to mention that the ILP was unable to find a solution for any of the experiments conducted due to the large number of variables involved in the ILP formulation.

Lastly, we note that although the optimization problem is complex, it can be formulated as an Integer Linear Program (ILP). We provide the ILP formulation in the Appendix for completeness. However, it is important to mention that the ILP was unable to find a solution for any of the experiments we conducted due to the large number of variables involved in the ILP formulation.

3.3 Scheduling Algorithms

We present in this section six different scheduling algorithms for the problem. We start by proposing two extensions of Johnson’s algorithm. Then we propose two algorithms based on list-scheduling. Finally, we propose two greedy algorithms which are more computationally demanding, since they explore a wider spectrum of solutions. Each algorithm produces the ordered list used to schedule the tasks, and the rule of the game (defined below) : (i) without backfilling; (ii) with backfilling; or (iii) with exhaustive insertion. The complete schedule, with the starting time of each task, is fully determined by the ordered list and the rule of the game, as detailed below.

3.3.1 Extensions of Johnson’s Algorithm. As recalled in Section 3.2, Johnson’s algorithm builds an optimal solution in the absence of unavailability intervals. Johnson’s algorithm works as follows. The jobs are partitioned in two sets M_1 and M_2 where jobs in M_1 are exactly the jobs which have an execution time on the first machine smaller than or equal to their execution time on the second machine. In our context, this means that M_1 contains exactly the jobs whose compression task is not longer than its I/O task. Now jobs in M_1 are sorted by non-decreasing execution time on the first machine (i.e., by non-decreasing duration of their compression task) , while jobs in M_2 are sorted by non-increasing execution time on the second machine (i.e., by non-increasing duration of their I/O task) . Then Johnson’s algorithm executes first all jobs in M_1 followed by all jobs in M_2, starting each task as soon as possible.

We extend Johnson’s algorithm to take unavailability intervals into account. The first version is straightforward : the ExtJohnson algorithm executes tasks in the same order as Johnson’s algorithm would in the absence of unavailability intervals, but executes each task as soon as possible after already scheduled tasks and while respecting the unavailability intervals. ExtJohnson is illustrated on Figure 1c where $M_1 = \{(R_1, B_1), (R_3, B_3)\}$.

On Figure 1c, there is an unused interval on the first machine between times 4 and 6, during which task R_2 could have been executed. Backfilling [39] is a scheduling technique which enables to take advantage of such intervals of idleness. Under backfilling, a new task, rather than being mandatorily scheduled after the completion of all already scheduled tasks, can be scheduled in an idleness interval if doing so does not delay the start of any already scheduled task. If several idleness intervals can accommodate the new task, the task is scheduled in the earliest one. ExtJohnson+BF is a variant of ExtJohnson with backfilling. ExtJohnson+BF considers tasks for scheduling decisions in the same order as ExtJohnson but starts each task as soon as possible, provided that this never postpones the start of an already considered task. The behavior of ExtJohnson+BF is
illustrated on Figure 1d. Note that, because tasks in M_1 are ordered by non-decreasing compression times, the execution dates of compression tasks of M_1 are always the same under ExtJohnson and ExtJohnson+BF.

3.3.2 List Scheduling Algorithms. In parallel scheduling, a list scheduling algorithm considers tasks one by one following a predefined order, and it schedules each task as soon as possible after the already scheduled tasks. Hence, ExtJohnson is a list scheduling algorithm following Johnson’s order without unavailability intervals. Our third algorithm GenerationListSchedule uses list-scheduling on the tasks, according to their original order when we generate them by fine-grained compression. The fourth algorithm GenerationListSchedule+BF is the counterpart of GenerationListSchedule when adding a backfilling mechanism: when scheduling a task, GenerationListSchedule+BF allows it to start earlier than some already scheduled task, as long as it does not cause any delay to scheduled tasks.

3.3.3 More Costly Greedy Algorithms. The fifth and sixth algorithms explore more execution orders. The idea is to try and insert the new task under consideration at any position in the task list that captures the current solution. Both algorithms start with the original order of the tasks when these are generated by fine-grained compression. OneListGreedy always keep the same order for compression and I/O tasks, while TwoListsGreedy enables different orderings. For OneListGreedy, assume that we have a partial ordered list of r compression tasks. For the $r+1$-th task, we try and insert it at any possible position (first, second, ..., last) in the list, which means $r+1$ attempts. Each attempt consists of greedily scheduling the compression tasks and the I/O tasks as soon as possible, while ensuring that no I/O task can start before the completion of the corresponding compression task. OneListGreedy will retain the attempt that leads to the smallest total execution time and updates the partial list accordingly. This insertion technique is more aggressive than backfilling, because it recompensates and possibly delays the starting times of previously scheduled tasks.

OneListGreedy restricts to constructing and updating the same ordered list for both compression and I/O tasks. On the contrary, TwoListsGreedy allows for different orderings of the compression tasks and the I/O tasks. Therefore it maintains two partial lists, one for each task type. When inserting the $r+1$-th tasks, we now have $(r+1)^2$ attempts and keep the best of them to update both lists. Note that each attempt can be executed in time linear in the number of tasks and unavailability intervals. Altogether, the complexity of OneListGreedy is $O(K^2)$ and that of TwoListsGreedy is $O(K^3)$, where $K = \max(m, k, o)$ is the maximum number of parameters, either tasks (m compression and m I/O tasks) or unavailability intervals (k on the compression thread and o on the background thread).

3.4 I/O Workload Balancing

The proposed scheduling algorithms lead to significant reductions in the overall execution time of simulations. However, it is important to note that the size of compressed data can vary significantly across processes, depending on the compressibility of the data assigned to each process. Some processes may have partitions with less information that can be effectively compressed, while others may have more challenging partitions that are less compressible. While compression time is not highly dependent on the compression ratio, I/O time is greatly influenced by the size of the compressed data. Additionally, if a partition is difficult to compress, it is likely that all its data fields will be challenging to compress as well. Consequently, some processes may experience longer I/O times compared to others, potentially becoming a bottleneck for the entire system. To address this issue, we propose an intra-node load balancing mechanism to mitigate the imbalance of the I/O workload for compressed data. We do not extend this mechanism to inter-node scenarios due to the significantly higher inter-node communication overhead.

For most HPC applications, we notice that the compression ratio of the data being dumped remains relatively stable from one iteration to another for a given partition. For instance, in a Nyx simulation, we have observed that the compression ratio differences between two consecutive data dumping operations has an average of 1.45% with a standard deviation of 0.64% from six samples. This stability is due to the fact that the simulation does not undergo significant changes in the data characteristics over a short period of time. Furthermore, our evaluation, as depicted in Figure 6, also corroborates this point by demonstrating our ability to utilize the same Huffman tree for encoding quantization codes across multiple iterations. Based on this observation, we propose utilizing the compression ratio from the previous iteration as a guide for load-balancing the I/O operations in the current iteration. By doing so, we can effectively address any imbalances and ensure a more equitable distribution of the I/O workload.

Within a given node, we determine the workload of each process by considering its total length of I/O tasks from the previous iteration. If a process has a high workload, we redistribute a proportion of its I/O tasks to processes with lower workloads. Specifically, we implement a load-balancing mechanism by assigning the first I/O task of the process with the largest I/O workload to be the last I/O task for the process with the least I/O workload. We continue this assignment until the workload of the process with the largest workload is smaller than twice the workload of the process with the smallest workload. This helps to redistribute the I/O tasks more evenly across the processes and alleviate any workload imbalances. However, we have observed that the total length of compression tasks for different processes
remains relatively stable. This is because the compression throughput is not significantly affected by the compressibility of the data, and the size of the raw data is the same across all processes. Therefore, we apply the task load-balancing technique only to the I/O tasks, as it effectively addresses the workload imbalance in that aspect.

4 Design of Our Proposed Framework

In this section, we present our proposed framework that deeply integrates lossy compression with parallel I/O libraries, allowing for the overlap of compression and I/O with computation using our task scheduling algorithms. Figure 2 shows the overview of our proposed framework. The goal is to dump the data generated from iteration n during the next iteration $n + 1$. First, we detail the runtime design that consists of three main components: fine-grained compression, compressed data buffer, and shared tree for Huffman coding. Then, we offer implementation details for HPC applications.

4.1 Fine-grained Compression

The large volume of data generated by HPC applications often consists of multiple data fields. For instance, data from a Nyx cosmological simulation may include density, temperature, and velocity information, resulting in multiple data fields. While it may seem intuitive to compress each data field separately to achieve granularity in compression tasks for our task scheduling algorithms, most scientific applications have only a few data fields (e.g., 6-12 data fields). This limits the number of compression tasks and I/O tasks, leading to low task scheduling efficiency. To address this challenge, we propose slicing each data field into smaller data blocks and independently compressing each data block. This significantly increases the number of tasks, benefiting our task scheduling problem with obstacles. Specifically, we use a block size of 8-16 MB for compressing the data, while ensuring an even division of each data field. As an example, consider a Nyx cosmology simulation with a scale of $1024 \times 1024 \times 1024$ distributed across 64 processes, resulting in 64 MB of data per process for each data field. In this case, we divide each data field into eight blocks per process using a block size of 8 MB. Fine-grained compression may introduce two potential issues: (1) a degradation in compression ratio compared to compressing the data together, and (2) a decrease in compression and I/O throughput. However, the evaluation presented in Section 5.3 demonstrates that using a minimum data block size of 8 MB results in minimal compression ratio degradation. In practice, we use offline profiling to evaluate compression and I/O performance on a given system to identify the point at which compression and I/O throughput start to deteriorate with small data block sizes. This analysis informs our choice to select the smallest available block size (≥ 8 MB). To mitigate the impact on I/O throughput, we propose the use of a compressed data buffer. Moreover, to minimize overhead caused by degradation in compression throughput, we propose the use of a shared Huffman tree.

4.2 Compressed Data Buffer

Based on our observations, the size of compressed data blocks can be relatively small, with some blocks even smaller than 1 MB, depending on the achieved compression ratio. However, writing data smaller than 1 MB can significantly reduce I/O throughput. To optimize I/O efficiency, we introduce an additional compressed data buffer that allows us to initiate I/O tasks as soon as possible while maintaining high throughput. Based on our evaluation presented in Section 5.3, we set the maximum size of the compressed data buffer to 10 MB, which typically accommodates 12 compressed data blocks when the data block size is 8 MB and the average compression ratio is 10×. We have observed that further increasing the maximum compressed data buffer size does not result in significant performance improvement. The policy of writing the compressed data to the buffer and subsequently writing the buffer to the storage system is determined after the task scheduling. During the execution phase, once the execution orders for compression and I/O tasks are determined, we start placing the compressed data into the buffer when the background thread is engaged with I/O tasks or core tasks.

4.3 Huffman Coding with Shared Tree

During the prediction-based lossy compression process, one of the crucial steps is Huffman encoding of the quantization codes after prediction and quantization steps. When
We implement our solution using the HDF5 parallel I/O library. We propose using shared Huffman trees across different processes to address the dependencies and timing of launching multiple compression tasks before any I/O task for compressed data can proceed. Instead, we build the shared Huffman tree based on the quantization code from the previous one or few iterations and utilize it for the data of the current iteration. This is a trade-off between compression ratio and shared tree reuse frequency. This tree is stored in memory and loaded into the compressor when compressing each data block. Based on our evaluation in Section 5.3, the shared Huffman tree can be reused for over 10 iterations without significant compression ratio degradation.

4.4 Implementation Details

We implement our solution using the HDF5 parallel I/O library [53], but the principles can be extended to other parallel I/O libraries as well. We utilize the VOL connector from HDF5 [49] to control the compression queue of the compression tasks and launch asynchronous I/O tasks in the background thread. In addition, we predict the compression ratio before the actual compression process to compute the offset for each data block using the algorithms described in [27]. We also predict the compression time and I/O time for the compressed data based on the compression throughput and I/O throughput prediction approach proposed by Jin et al. [30]. To handle the rare occurrence of data overflow caused by a higher-than-predicted compression ratio, we have implemented additional space at the end of the shared HDF5 file to store the overflowed data. This extra I/O task for the overflowed data is not predictable and cannot be scheduled in advance. Thus, we queue this extra I/O task at the end of the last I/O task for the compressed data.

All the proposed task scheduling algorithms are based on the observation that the total compression time is theoretically fixed regardless of the compression order. Our optimization focuses on the dependencies and timing of launching write operations for each compressed data to minimize timeouts compared to compression. The time complexity of the proposed algorithm is $O(n \log n)$, whereas the time complexity of our compression is $O(N)$. Considering that N (i.e., the number of values) in one data partition is significantly larger than n (i.e., the number of data fields), the optimization overhead is almost negligible compared to the actual compression and write time. On a typical HPC application run, n can range from 6 to 12, while N can range from 2 million to 128 million.

Based on our algorithm design, we can expect the optimization to bring benefits when there is a relatively stable balance between compression time and I/O time. Additionally, we note that our optimization can provide greater benefits when the size of data fields is relatively large. This is because the overall performance is dependent on the process with the longest time among all the processes, due to independent asynchronous writes.

5 Performance Evaluation

In this section, we present the evaluation results of our proposed framework for accelerating HPC applications. We first provide details about the experimental setup and the HPC applications used in our evaluation. Next, we assess the performance of our proposed task scheduling algorithms and identify the most efficient one for further evaluations. We then evaluate the performance of each individual component of our compression design. Finally, we conduct a comprehensive performance evaluation using both simulation and real-world HPC applications, comparing the results to the baseline solution without compression and the previous solution using asynchronous I/O without lossy compression.

5.1 Experimental Setup

System configuration. We rigorously implement our approach using HDF5 [9] and SZ3 [38], a modularized prediction-based lossy compressor. Our experiments are conducted on the Summit supercomputer [18] at Oak Ridge National Laboratory with 16 nodes and 64 GPUs, where each node is equipped with two IBM POWER9 processors featuring 42 physical cores and 512 GB DDR4 memory.

Compression configuration. We evaluate our approach using different scales of Nyx and WarpX applications. In all our evaluations, we utilize both GPUs and CPUs. While GPUs serve as the primary compute unit, CPUs handle compression and I/O tasks. Based on previous work [28, 29], we use absolute error bounds of $(0.2, 0.4, 1e+3, 2e+5, 2e+5, 2e+5)$ to compress the six Nyx data fields (baryon density, dark matter density, temperature, velocity x, velocity y, velocity z). respectively, to achieve an average PSNR (peak signal-to-noise ratio) of 78.6 dB, resulting in a compression ratio of approximately 16x. The problem size of the Nyx application used in our evaluation is $4096 \times 4096 \times 4096$ with three
We compress these additional fields: particle_vx, particle_vy, and particle_vz. We compress these additional fields with a compression ratio of 16x to ensure the post-hoc analysis quality. For the WarpX application, we compress the data fields with a compression ratio of 273.9x, as suggested by the application developers based on their post-hoc analysis.

5.2 Evaluation of Task Scheduling Algorithms

First, we conduct an evaluation of the task scheduling algorithms proposed in Section 3.3, focusing on their overhead and optimized iteration time, based on the problem statement outlined in Section 3.1. To gather data for our evaluation, we sample three stages of a Nyx run, which is performed at a scale of 1024 × 1024 × 1024 with 16 GPUs from 4 nodes. We collect data from the beginning of the run when the data distribution is mostly even, the middle of the run when the data is structured, and towards the end of the run when the data becomes highly centralized and the compressibility of the data varies across different partitions.

In this case, each process holds a partition size of 256 × 512 × 512. Following our framework design described in Section 4, we use a fine-grained compression block size of 8.39 MB, resulting in 32 data blocks per process. It is important to note that we deliberately employ a non-integer block size to ensure an evenly divided distribution of data blocks without significant size discrepancies.

Next, we measure the time required to perform lossy compression and write operations for each data block. It is worth mentioning that in this section, our focus is on evaluating the performance of the proposed task scheduling algorithms. To determine the most suitable algorithm, we utilize actual values of compression time, I/O time, and computation intervals instead of relying on predicted values.

We observe that the overall performance of our proposed framework, as presented in this section, is slightly better than that in subsequent sections that employ predicted values. This discrepancy can primarily be attributed to the inherent uncertainty associated with predicting compression time, I/O time, and the intervals between neighboring simulation iterations for each data block.

Table 1 presents the average scheduled iteration time for each algorithm. In addition, we also evaluate the Integer Linear Program (ILP) as one of the task scheduling algorithms, described in the appendix. While it can sometimes offer the fastest iteration time, its computation time is significantly longer than the other algorithms. In general, Johnson’s algorithms with backfilling demonstrate the best overall performance, considering both execution time and overhead. Thus, we adopt Johnson’s algorithms with backfilling for our subsequent evaluations.

It is worth noting that in cases where the CPU and I/O idle time during the simulation significantly exceeds the time required for compression and compressed data I/O operations (e.g., when data is dumped at relatively longer step sizes), our selected task scheduling algorithm has the potential to effectively mitigate the impact of compression and I/O on the simulation. In other words, the scheduling algorithm can minimize the perceived delays caused by these operations, enabling the simulation to proceed seamlessly.

Next, we evaluate the effectiveness of our proposed I/O workload balancing techniques in combination with the task scheduling algorithm. We assess their performance across various data distribution scenarios by assuming a maximum compression ratio difference among processes within a given node with 4 to 8 processes (i.e., GPUs). We further assume that the compression ratios for each process follow a normal distribution based on this maximum difference.

Figure 3 shows the relative performance improvement in execution time achieved by the I/O workload balancing technique, compared to the original execution time. We observe that as the compression ratio differences between processes increase, the I/O workload balancing technique provides a higher performance improvement. It is important to note that the specific value of the maximum compression ratio difference is highly dependent on the characteristics of the HPC application being performed. For instance, in the case of the Nyx Application, this number can reach as high as 20 with an average compression ratio of 16x. In worst-case scenarios where the maximum compression ratio difference is extremely low, the I/O workload balancing technique does not introduce additional overhead to the system.

5.3 Evaluation of Proposed Compression Design

In this section, we evaluate the efficiency of the three designs we proposed in Section 4: fine-grained compression, compressed data buffer, and shared Huffman tree. We begin...
by evaluating the benefits derived from fine-grained compression. For this experiment, we select three stages of a Nyx Application, performed at a scale of $512 \times 512 \times 512$ using 8 GPUs. Each process in this setup manages a partition size of $256 \times 256 \times 256$, with each data field approximately sized at 64 MB. Figure 4 illustrates the relative execution time with different compression block sizes. The relative execution time is measured in terms of the execution time without fine-grained compression, which is 64 MB in this case. During this experiment, we utilize fine-grained compression, a compressed data buffer of 20 MB, the shared Huffman tree, and employ ExtJohnson+BF for scheduling. To accurately evaluate the design efficiency of fine-grained compression alone, we also utilize the actual compression time, I/O time, and interval values instead of relying on predicted values.

First, we observe that fine-grained compression effectively enhances overall performance across various data distribution scenarios. However, it is crucial to consider the block size used, as excessively small block sizes can nullify the performance benefits of fine-grained compression. This is primarily due to a significant decrease in compression and I/O throughput. We also observe that the shared Huffman tree can significantly improve compression throughput when the data block size is small. In this case, we find that using a block size of 8-16 MB when compressing the data and evenly dividing each data field works best. When comparing different data distributions, we find that fine-grained compression offers similar performance improvements for evenly distributed data during the early stage of the run, as well as for structured data with a wider range of compression ratios, such as the middle stage of the run. This is because the primary advantage of fine-grained compression lies not only in initiating I/O operations earlier but also in accommodating more compression and I/O tasks within the computation application intervals. As a result, the benefits of fine-grained compression are less dependent on the specific characteristics of the data and their compressibility.

Next, we evaluate the effectiveness of utilizing a compressed data buffer. For this experiment, we use the same configurations as the fine-grained compression evaluation, with a compression block size of 8 MB. Figure 5 presents the relative time of the combined I/O tasks for compressed data, considering different buffer sizes. Notably, the compressed data buffer demonstrates an efficient reduction in overall I/O time. This is because of the relatively small size of the compressed data, which allows for improved write performance through the consolidation of these small data units. In addition, our evaluation reveals that the performance improvement achieved through the use of a compressed data buffer is consistent across data from different HPC applications, independent of the data structure and compression ratio distribution. Based on our findings, we determine that a compressed data buffer size of 20 MB delivers the optimal performance enhancement while minimizing the memory footprint required for the buffer.

Finally, we evaluate the effectiveness of utilizing the shared Huffman tree. For this experiment, we use the same configurations as the previous experiments, with a compression block size of 8 MB and a compressed data buffer of 20 MB. Figure 6 shows the relative compression ratio degradation compared to using a native Huffman tree for the given data, when reusing the same Huffman tree for multiple iterations. We notice that during the early stages/iterations where data movement is relatively stable, the shared Huffman tree can be effectively utilized for a greater number of iterations. Moreover, by constructing the shared Huffman tree based on data from the previous iteration (e.g., iteration number
we assume a normal distribution for the uncertainties of

1 in Figure 6), we can achieve minimal compression ratio
degradation while introducing minimal overhead in terms of
rebuilding the Huffman tree at the end of each iteration.

5.4 Overall Performance Improvement

In this section, we combine the aforementioned task schedul-
ing step with our proposed compression design to real-world
HPC applications to evaluate the performance improvement
from our proposed solution. We begin by evaluating the per-
formance improvement based on simulations, allowing us
to gather valuable insights and further validate our design
approach. Next, we present the in situ evaluation conducted
with Nyx and WarpX, showcasing the practical application
and effectiveness of our framework in real-world scenarios.

5.4.1 Simulation-based evaluation. Our simulation eval-
uations primarily focus on assessing the efficiency of our
framework across different overall compression ratios and
data distributions, as evaluating with real-world applications
is challenging. We gather the base computation intervals
from Nyx application. Then, we assume that the uncertainty
associated with the start and end times of these intervals
between neighboring iterations follows a normal distribu-
tion. The variance of this normal distribution is determined
by $\sigma = 0.01 \times (end_n - beg_n)$, where end_n represents the
end time of the given iteration, and beg_n represents the start
time of the given iteration. This assumption is based on our
observations from Nyx and WarpX applications. Similarly,
we assume a normal distribution for the uncertainties of
the compression ratio, compression throughput, and
compressed data I/O time estimation. We use $\sigma = 0.1 \times R$
for compression ratio, $\sigma = 0.05 \times T_c$ for compression through-
put, and $\sigma = 0.05 \times T_{io}$ for I/O throughput. Here, R is the
estimated compression ratio of each data blocks, T_c is the
estimated compression throughput, and T_{io} is the estimated
I/O time. To handle potential conflicts between compression,
I/O, and computation intervals, we make the straightforward
assumption that both CPU tasks and background tasks are
executed sequentially. This means that if a CPU interval
takes longer than anticipated, it can result in delays for sub-
sequent compression tasks, potentially introducing overhead
to the application.

During the simulation, our main comparison is between
the performance of our solution and the baseline approach
where the data is not compressed, and the I/O operations are
performed sequentially with the computation. We evaluate
the performance by measuring the time overhead incurred
on the computation per iteration.

Figure 7 illustrates the performance of our solution across
different average compression ratios. We observe that our
solution consistently outperforms the baseline approach across
various compression ratios. Notably, when the compression
ratio is high, our solution exhibits slightly better perform-
ance. This can be attributed to the smaller size of the com-
pressed data, resulting in shorter I/O time. As a result, the
overall time spent on I/O is reduced, and our scheduling
design benefits from more efficient allocation of I/O tasks
within the computation intervals.

Figure 8 shows the performance of our solution across
different data structure. We use the maximum compression
ratio differences to represent the data structure. Lower max-
um compression ratio differences typically indicate that
the data is evenly distributed among the processes. We ob-
serve that our solution consistently outperforms the baseline
across various data structures. However, when the maximum
compression ratio difference is high, our solution exhibits
slightly worse performance. This is primarily due to imbal-
anced workloads across different processes. Nevertheless,
our I/O workload balancing design helps mitigate the neg-
ative impact of workload imbalances. By efficiently redis-
tributing tasks among processes, our solution minimizes the
effects of workload variations, resulting in overall improved
performance compared to the baseline approach.

5.4.2 Real-system-based evaluation. Finally, we eval-
uate our solution with real-world applications running on
the HPC system and compare it to the baseline and the pre-
vious solution, which only uses asynchronous I/O without
compression or task scheduling techniques.

Figure 9 shows the overall performance improvement of
our solution in comparison to the baseline and previous sol-
utions on the Nyx application. Additionally, we provide
Figure 9. Time overheads (compared to computation time) of the baseline, asynchronous I/O, and our solution (with simulation for reference) with Nyx using 16 nodes and 64 GPUs.

Figure 10. Time overheads (compared to computation time) between the baseline, asynchronous I/O, and our solution across different timesteps with Nyx and WarpX.

Figure 11. Time overheads (compared to computation time) of the baseline, asynchronous I/O, and our solution with different scales of Nyx and WarpX.

simulation results for reference. We note that the real implementation results in slightly larger overhead compared to the simulation results. This is because the real implementation encounters more unexpected task interference due to (1) uncertainty of computing application intervals, and (2) inaccurately predicted compression ratio, compression time and/or I/O time for compressed data. Nonetheless, our solution still achieves a significant performance improvement, with a 3.78× and 2.57× improvement over the baseline and previous solutions, respectively.

Figure 10 presents the performance of our solution across different stages of the application: the beginning, middle, and end. Our solution consistently outperforms the previous solution across all stages of the application.

We also conduct a weak scaling evaluation to assess the performance of our solution as the problem size scales with the number of processes (GPUs), as shown in Figure 11. In this experiment, the problem scale for each process is 256 × 256 × 256 for Nyx and 128 × 128 × 1024 for WarpX. Once again, our solution consistently outperforms the previous solution across all tested scales.

It is worth noting that both the baseline and the previous solution experience longer execution times as the scale increases. In contrast, our solution exhibits more consistent performance across different scales. This can be attributed to our data compression approach, where the overhead primarily arises from conflict tasks resulting from mis-predicted compression and I/O operations.

6 Conclusion and Future Work

Lossy compression and asynchronous I/O are two efficient solutions for reducing storage overhead and improving I/O performance in large-scale HPC/scientific applications. However, existing implementations have limitations that hinder the full utilization of lossy compression and can lead to task collisions, limiting the overall application performance. To address these challenges, we propose an optimization approach for the task scheduling problem involving application computation, compression, and I/O. Experimental results with up to 64 GPUs from Summit demonstrate that our solution reduces I/O overhead by up to 3.8× and 2.6× compared to the non-compression and asynchronous I/O solutions, respectively. Note that the efficacy of the proposed solution might decrease when the application is more reliant on CPUs than GPUs, leading to fewer CPU idle periods.

In the future, we plan to expand the integration of our solution to additional parallel I/O libraries, such as ADIOS, and evaluate its performance with a wider range of real-world HPC applications. Furthermore, we intend to extend our proposed task scheduling method and compression design to accommodate multi-file scenarios, where the dumping data is stored in multiple files for specific HPC applications.

Acknowledgments

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, to support the nation’s exascale computing imperative. The material was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (ASCR), under contracts DE-AC02-06CH11357 and DE-AC02-05CH11231. This work was also supported by the National Science Foundation under Grants 2003709, 2303064, 2104023, 2247080, 2247060, 2312673, 2311875, and 2311876.

We provide the ILP discussed in Section 3.2. We need to introduce some new variables for this ILP: A Integer Linear Program

\[\text{minimize} \quad \mathbf{t}_{\text{overall}} \quad \text{subject to} \]

\[
\begin{align*}
\tau_{\text{overall}} & \geq t_{\text{end}}(B_{n,i}) \\
t_{\text{end}}(R_{n,i}) & \leq s_{\text{start}}(B_{n,i}) \\
t_{\text{end}}(R_{n,i}) &= t_{\text{start}}(R_{n,i}) + c_{n,i} \\
t_{\text{end}}(B_{n,i}) &= s_{\text{start}}(B_{n,i}) + c'_{n,i} \\
t_{\text{start}}(X_{n,i}) & \geq t_{\text{end}}(X_{n,i}) - (1 - \text{first}_{j}^{(X)}) Z \\
t_{\text{start}}(X_{n,i}) & \geq t_{\text{end}}(X_{n,i}) - \text{first}_{j}^{(X)} Z \\
\sum_{h=1}^{1+k} \delta_{i,h}^{(R)} (\text{beg}_{n} + b_{n,i}) & \leq t_{\text{start}}(R_{n,i}) \\
\sum_{h=1}^{1+k} \delta_{i,h}^{(B)} (\text{beg}_{n} + b'_{n,i}) & \leq t_{\text{start}}(B_{n,i}) \\
t_{\text{end}}(R_{n,i}) & \leq \sum_{h=1}^{k+1} \delta_{i,h}^{(R)} (\text{beg}_{n} + a_{n,i}) \\
t_{\text{end}}(B_{n,i}) & \leq \sum_{h=1}^{a+1} \delta_{i,h}^{(B)} (\text{beg}_{n} + a'_{n,i}) \\
\sum_{h=1}^{1+k} \delta_{i,h}^{(R)} &= 1 \\
\sum_{h=1}^{1+k} \delta_{i,h}^{(B)} &= 1
\end{align*}
\]

Figure 12. Integer Linear Program optimally solving the scheduling problem.

The ILP to find an optimal solution to the scheduling problem is presented in Figure 12 (where for each equation, we have \(1 \leq i < j \leq m\), and \(X \in \{R, B\}\)). Here is a walkthrough:

- Equation (1): the iteration completion time is greater than the maximum of the completion time of the I/O tasks.
- Equation (2): an I/O task cannot start before the completion of the corresponding compression task.
- Equations (3) and (4): the completion time of a task is equal to its start time plus its execution time.
- Equation (5): if task \(X_{n,i}\) precedes task \(X_{n,j}\) in the schedule, then task \(X_{n,i}\) must be completed before task \(X_{n,j}\) can start. If \(X_{n,i}\) precedes \(X_{n,j}\) then first\(_{i,j}^{(x)}\) is equal to 1 and Equation (5) is equal to \(t_{\text{start}}(X_{n,i}) \geq t_{\text{end}}(X_{n,i})\).
- If, on the contrary, \(X_{n,j}\) precedes \(X_{n,i}\) then first\(_{i,j}^{(x)}\) is equal to 0 and Equation (5) is equal to \(t_{\text{start}}(X_{n,i}) \geq t_{\text{end}}(X_{n,i}) - Z\) and Equation (5) is not constraining.

- Equation (6): if task \(X_{n,i}\) precedes task \(X_{n,j}\) in the schedule, then task \(X_{n,j}\) must be completed before task \(X_{n,i}\) can start. If \(X_{n,j}\) precedes \(X_{n,i}\) then first\(_{i,j}^{(x)}\) is equal to 0 and Equation (6) is equal to \(t_{\text{start}}(X_{n,i}) \geq t_{\text{end}}(X_{n,i})\).
- If, on the contrary, \(X_{n,i}\) precedes \(X_{n,j}\) then first\(_{j,i}^{(x)}\) is equal to 1 and Equation (6) is equal to \(t_{\text{start}}(X_{n,i}) \geq t_{\text{end}}(X_{n,i}) - Z\) and Equation (6) is not constraining.

- Equations (7) and (8): if binary variable \(\delta_{i,h}^{(R)}\) (resp. \(\delta_{i,h}^{(B)}\)) is equal to 1, then task \(R_{n,i}\) (resp. \(B_{n,i}\)) can start at the earliest at time \(end_{a} + b_{n,i-1}\) (resp. \(end_{a} + b'_{n,i-1}\)), the end of the \((i-1)\)-th unavailability interval.

- Equations (9) and (10): if binary variable \(\delta_{i,h}^{(R)}\) (resp. \(\delta_{i,h}^{(B)}\)) is equal to 1, then task \(R_{n,i}\) (resp. \(B_{n,i}\)) can complete at the latest at time \(beg_{n} + a_{n,i-1}\) (resp. \(beg_{n} + a'_{n,i-1}\)), the start of the \(i\)-th unavailability interval.

- Equations (11) and (12): all tasks must be executed at some point.
B Artifact Appendix

B.1 Artifact DOI
10.5281/zenodo.8394043

B.2 Description of Artifacts
Within this artifact, we offer a comparative analysis, benchmarking our solution against two alternative approaches: (1) the previous method employing asynchronous writes without data compression, and (2) the baseline solution uses synchronous data writes without compression. This alignment with our paper underscores the performance enhancements our solution delivers.

Furthermore, we conducted our artifact implementation on Chameleon Cloud, utilizing a Singularity container to ensure optimal applicability across various computing environments. The test node on Chameleon Cloud is equipped with two Intel Xeon E5-2660 CPUs and 128 GB of memory, specifically configured with gpu.model=P100. We strongly recommend to use Chameleon Cloud platform for assessments with consistency and reproducibility.

B.3 Reproducibility of Experiments

B.3.1 Description of Experiment Workflow.
The entire workflow takes approximately 15 minutes to execute, including downloading container image and preparing environment (4 mins), running WarpX simulation (5 mins), running Nyx simulation (5 mins), and evaluating performance (1 min).

B.3.2 Minimum system requirements.
- OS: Ubuntu (20.04 is recommended)
- GPU: Nvidia GPUs with CUDA >= 12.2
- Memory: >= 16 GB RAM
- Processor: >= 16 cores
- Storage: >= 32 GBs

B.3.3 Artifact Installation Deployment Process.
- Step 1: Install Singularity
 Please refer to:
 https://singularity-tutorial.github.io/01-installation/.

- Step 2: Download, Build, and run the image file (need root privilege) with singularity
 You can download, build, and run the image file that encompasses all the necessary components.
 sudo pip3 install gdown
gdown https://drive.google.com/uc?id=1o0AumoDJgnZK\clXv-ZH7b51GhKzP4_6A
 sudo singularity build --sandbox artiAsync \AsyncSchedule.sif
 sudo singularity shell --writable artiAsync

 Now, you are running inside of the container.

- Step 3: Set up environmental variables
 export OMPI_DIR=/opt/ompi
 export OMPI_VERSION=4.1.1
 export PATH=$OMPI_DIR/bin:$PATH
 export LD_LIBRARY_PATH=$OMPI_DIR/lib:$LD_LIBRARY_PATH
 export MANPATH=$OMPI_DIR/share/man:$MANPATH
 export C_INCLUDE_PATH=/opt/ompi/include:\$C_INCLUDE_PATH
 export CPLUS_INCLUDE_PATH=/opt/ompi/include:\$CPLUS_INCLUDE_PATH
 export OMPI_ALLOW_RUN_AS_ROOT=1
 export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1

 - Step 4: Run Nyx simulation with (1) baseline, (2) previous, and (3) ours
 cd /home/EuroSys-AsyncSchedule/
 bash ./runnyx.sh

 - Step 5: Run WarpX simulation with (1) baseline, (2) previous, and (3) ours
 cd /home/EuroSys-AsyncSchedule/
 bash ./runwarpx.sh

 - Step 6: (Optional): We retain log files for all runs, and now you can check them out
 head -n 200 ./Nyx/Exec/LyA/test1.txt
 head -n 100 ./WarpX/test1.txt

The expected results for Nyx’s log are:
Nyx::est_time_step at level 0: estdt = 1.365270159e-07
Integrating a from time 1.345051497e-07 by dt = 1.36527
Old / new A time 1.345051497e-07 2.710321656e-07
Old / new A 0.00631247703 0.0063755786
Old / new z 157.416418 155.8485094
Re-integrating a from time 1.345051497e-07 by dt = 1.3
Old / new A time 1.345051497e-07 2.710321656e-07
Old / new A 0.00631247703 0.0063755786
Old / new z 157.416418 155.8485094

The expected results for WarpX’s log are:
STEP 3 starts ...
--- INFO : Writing plotfile diags/plt000003
STEP 3 ends. TIME = 3.25787071e-16 DT = 1.85956903e-16
Evolve time = 10.47966713 s; This step = 3.457123984 s;
STEP 4 starts ...

- **Step 7:** Evaluate Nyx’s performance between (1) baseline, (2) previous, and (3) ours

 cd $TEST_HOME/Nyx/Exec/LyA
 python3 ./readresults.py test1.txt test2.txt test3.txt test4.txt

- **Step 8:** Evaluate WarpX’s performance between (1) baseline, (2) previous, and (3) ours

 cd $TEST_HOME/WarpX/
 python3 ./readresults.py test1.txt test2.txt test3.txt test4.txt

The expected results for Nyx’s performance comparison are:
Sample from 10 iterations.

<table>
<thead>
<tr>
<th>Baseline: no compression, no asynchronous write.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyx simulation with Baseline solution time: 47.08 s</td>
</tr>
<tr>
<td>Baseline overhead compared to computation only: 37.2 %</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Previous: no compression, no asynchronous write.</td>
</tr>
<tr>
<td>Nyx simulation with Previous solution time: 47.04 s</td>
</tr>
<tr>
<td>Previous overhead compared to computation only: 37.1 %</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Ours: no compression, no asynchronous write.</td>
</tr>
<tr>
<td>Nyx simulation with Our solution time: 37.12 s</td>
</tr>
<tr>
<td>Ours overhead compared to computation only: 8.2 %</td>
</tr>
</tbody>
</table>

Our improvement compared to previous: 4.53 times
--- End ---

The expected results for WarpX’s performance comparison are:
Sample from 10 iterations.

<table>
<thead>
<tr>
<th>Baseline: no compression, no asynchronous write.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WarpX simulation with Baseline solution time: 38.74 s</td>
</tr>
<tr>
<td>Baseline overhead compared to computation only: 121.9 %</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Previous: no compression, no asynchronous write.</td>
</tr>
<tr>
<td>WarpX simulation with Previous solution time: 38.52 s</td>
</tr>
<tr>
<td>Previous overhead compared to computation only: 120.6 %</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Ours: no compression, no asynchronous write.</td>
</tr>
<tr>
<td>WarpX simulation with Our solution time: 23.87 s</td>
</tr>
<tr>
<td>Ours overhead compared to computation only: 36.7 %</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

Our improvement compared to previous: 3.29 times
--- End ---

Please note that the performance may vary on different machines and environments. Nevertheless, you should be able to discern the performance improvements our solution offers compared to previous approaches. These results are consistent with our paper’s findings. Please be aware that the runtime may vary, particularly when resources are limited. We highly recommend running steps 4, 5, 7, and 8 multiple times to observe consistent results.