
Machete: An Efficient Lossy Floating-Point Compressor
Designed for Time Series Databases

Yang Shi†, Xiangyu Zou†, Xinyu Chen‡, Sian Jin∗, Dingwen Tao**, Cai Deng†,
Yufan Chen†, and Wen Xia†,§,B

† Harbin Institute of Technology, Shenzhen ‡ Washington State University
∗ Temple University *

* Indiana University § Peng Cheng Laboratory
B xiawen@hit.edu.cn

Abstract

As time series data become popular, their volume increases rapidly. Time series databases
are designed for such data, and they process data in short slices, meaning that the com-
pression units for compressors are small. How to compress the short slices of floating-points
while reserving a high compression ratio and a high decompression speed remains a problem.

To solve the problem, we propose a lossy compressor Machete. It uses an efficient
hybrid encoder of Huffman encoding and variable length quantity (VLQ). Adaptive encoding
selection makes it excel on short-slice data compression ratio, while the simple framework
ensures fast decompression. We also find a limitation in VLQ and propose the optimal VLQ
to further improve the compression ratio.

Our evaluation on four real-world datasets shows that Machete outperforms state-of-the-
art compressors by 32%−80% on compression ratio, and achieves the fastest decompression
speed on two datasets. When applied to a well-known time series database InfluxDB,
Machete saves disk usage up to 79% and improves the query performance of the InfluxDB
database by saving I/O.

1 Introduction
Time series data are widely used in various fields [1–4]. This kind of data is made
up of a series of timestamp-value pairs with string tags, where values are usually
floating-points, to record how a variable (e.g., voltage or power [5]) changes over time.
Generally, these data are used to identify trends and patterns in analysis works, such
as prediction [1, 6] and anomaly detection [7, 8].

It is common to collect several terabytes of time series data every day and to
store them for years [9–11]. To process the data efficiently, time series databases
are designed with convenient analysis functions and efficient data layouts for time
series data [9, 11, 12]. As TSDBs become popular, TSDB compressors are receiving
more attention because of the huge data scale. With studies on current TSDBs, we
summarize three remarkable points on compression in TSDBs: (1) Strict error
bounds make lossy compressors practical for most cases. This is because time
series data are mainly used for trend analysis and prediction [1, 2, 6–8], and small
errors caused by lossy compressors have little impact on the trend. In addition, small
errors could be fixed by rounding for fixed-point data. Lossy compressed values of data
with l decimal places can be losslessly restored by rounding if compression errors are
small than±0.5×10−l. Therefore, lossy compressors can be used for general cases with
lossless ones for extreme cases where no errors are allowed and values have uncertain

decimal places. (2) Data are compressed in short slices. TSDBs compress data
in short slices separately, which helps to reduce read amplification (in decompression)
and process data parallelly. (3) Decompression speed is critical. This is because
decompression speed directly affects the query throughput and latency. Compression
speed is less important because data compression is asynchronous with the write
response and thus has little influence on write latency and throughput.

There are many previous works on time series data compression. Gorilla [9],
Chimp [13], and Elf [14] are lossless TSDB compressors. They follow a similar idea of
XORing data and striping heading/trailing zeros to save space. LFZip [15] is a lossy
compressor for time series data. It uses a prediction-correction framework that first
makes a prediction for each datum and encodes the differences between the predictions
and the actual values. SZ3 [16–18] is another state-of-the-art lossy compressor but
is designed for high-performance computing. Its framework is similar to LFZip, but
it uses different predictors and encoders. However, lossless TSDB compressors
hardly achieve high compression ratios, while existing lossy compressors
encounter significant performance drops in short-slice compression.

To this end, we propose a novel lossy compressor, Machete, that combines the
high compression ratio of lossy compressors with the short-slice-friendly and high de-
compression speed of TSDB compressors. Machete follows the prediction-correction
framework that LFZip and SZ3 use. But unlike LFZip and SZ3 focusing on high-
accuracy predictors, it uses a simple predictor and achieves the above remarkable
points with an efficient encoder. We summarize our main contribution as follows:
(1) We propose a hybrid encoder. The differences between predictions and ac-
tual values show complex characteristics in short-slice compression, so we proposed
an encoder that adaptively and swiftly assigns each datum to the best-fitting encod-
ing between Huffman encoding and VLQ. (2) We propose the optimal VLQ.
We lift a limitation in VLQ for array compression, making it configurable, and pro-
pose a method to find an optimal configuration according to input to improve the
compression ratio. (3) We apply Machete to a popular time series database
InfluxDB, and evaluate its performance with other state-of-the-art approaches.

Evaluations on real-world datasets suggest that Machete outperforms the second-
best by 32%−80% on compression ratio and decompresses as fast as the TSDB com-
pressors. Furthermore, when running in InfluxDB, it saves 47%−79% disk space and
improves query throughput and latency because of I/O saving without slowing down
write throughput.

2 Motivations
Both LFZip [15] and SZ3 [16–18] employ a prediction-correction framework.
The framework has two phases in compression: prediction and encoding. In the
prediction phase, a predictor generates a prediction for each datum and then outputs
the quantized differences between the predicted value and the actual one. In the
encoding phase, an entropy encoder encodes the quantized differences. The prediction
phase transforms floating-points into integers gathered around zero, making them
easier to encode. In decompression, the quantized differences are decoded, after
which the same predictions are made and corrected with the quantized differences.

−5,000 0 5,000
100

103

106

Value

F
re
q
u
an

cy

(a) Overall distribution

−5 0 5 10
100

103

106

−50 0 50
100

103

106

−400−200 0 200
100

103

106

−600−300 0 300
100

103

106

−500 0
100

103

106

−1,000 0 1,000
100

103

106

(b) Distributions on different slices of 1000 data

Figure 1: Distributions of quantized difference values on the GeoLife dataset [19–21].
Note that the y-axis is in the logarithm scale, and the presented range is cropped to
have a better view of the majorities.

Compressors with such a framework encounter several difficulties in a time series
database (TSDB). On the one hand, a complex predictor usually gates the
compression/decompression speed. We evaluate the Normalized Least Mean
Square Predictor (NLMS) of LFZip and find its throughput to be about 60MB/s,
which is unacceptable for a TSDB. On the other hand, a pure entropy encoder is
not suitable for short-slice compression. Fig. 1 lists the frequency distribution
of all quantized differences from the GeoLife dataset [19–21] and those of some short
slices. It shows the difficulties for entropy encoders:

(1) Redundancy reduces. The frequencies in Fig. 1b are much lower than those
in Fig. 1a, which is a certain result of data slicing. Redundancy reduction may not
influence data entropy, but it increases the time and space cost of entropy recording
(e.g., the Huffman tree of Huffman encoding or the probability table of arithmetic
encoding). Meanwhile, leveraging redundancy across slices is not allowed as it brings
sequence processing and read amplification, which contradicts the intention of data
slicing performed by TSDBs.

(2) Distributions vary. As shown in Fig. 1b, the distributions can be very
different from slice to slice. Such variance affects data entropy, and in some extreme
cases (e.g. the last figure in Fig. 1b), the frequencies are evened.

To handle these difficulties, we propose the Machete compressor. Unlike previous
lossy compressors that focus on predictor design, we pay more attention to the en-
coder phase. While simplifying the predictor for speed, we propose a hybrid encoder
that adaptively applies two high-speed encodings: Huffman encoding and variable
length quantity (VLQ). The encoder separates the low-redundancy part from the
high-redundancy part in an efficient way and then encodes them with VLQ and Huff-
man encoding, respectively. Furthermore, we propose the optimal VLQ to maximize
the compression ratio of VLQ, which lifts the limitation due to single value encoding
(will be detailed in Section 3.3), and other minor improvements including Huffman
tree structure compression and Huffman decode table.

3 Design and Implementation
Fig. 2 illustrates the design overview. A time series database passes an array of
floating-points as the input of the Machete compressor. As the first step, Machete

T
im

e
S
er
ie
s
D
a
ta
b
a
se

Prediction Phase
lossy

Encoding Phase
lossless

Sliced Original
Data

floating-points

P
re
d
ic
ti
o
n

Q
u
a
n
ti
za

ti
o
n

(E
rr
o
r
C
o
n
tr
o
l)

Q
u
a
n
ti
ze
d
D
iff
er
en

ce
s

in
te

g
e
rs

Hybrid Encoder

P
a
rt
it
io
n Unique

Extraction

Huffman
Tree

Huffman
Encoder

high

redundancy

Optimal
VLQ

low

redundancy

C
o
m
p
re
ss
ed

D
a
ta

b
in

a
ry

P
er
si
st
en

t
S
to
ra
g
e

Reconstructed
Data

floating-points

C
o
rr
ec
ti
o
n

P
re
d
ic
ti
o
n

Merge

Huffman
Decoder

Optimal
VLQ

Figure 2: Overview of our approach. The solid-shaded area is the prediction phase,
and the line-shaded area is the encoding phase.

makes a prediction of each value, calculates the difference between the predicted value
and the actual one, and quantizes the difference into an integer. Some information is
lost during the quantization, but the loss is guaranteed to be within a user-specified
bound. After getting all the quantized differences, Machete compresses them with
a lossless encoder. During decompression, the decompressor decodes the quantized
differences, makes the same predictions, and then corrects the predictions with quan-
tized differences to reconstruct the floating-point data.

3.1 Prediction, Quantization, and Error Control
Let xi be the ith datum of the input array, pi be the prediction of xi, and yi be the
corresponding reconstructed value. Then, the quantized differences δi between xi and
pi is calculated with Formula 1:

δi = [
xi − pi
2∆

] (1)

In Formula 1, ∆ is the user-defined error upper bound, and [f] means rounding f to
an integer. yi is reconstructed (or corrected) using Formula 2:

yi = pi + 2∆δi (2)

And we can prove the error bound is strictly followed:

δi = [
xi − pi
2∆

] ⇒ xi − pi
2∆

− 1

2
< δi ≤

xi − pi
2∆

+
1

2
⇔ −∆ < −xi + (pi + 2∆δi) ≤ ∆ ⇔ −∆ < yi − xi ≤ ∆ ⇒ |xi − yi| ≤ ∆

Machete predicts the current value xi equals the last one xi−1. However, the
decompressor does not know xi−1 but knows yi−1, so we have to let pi = yi−1 for both
the compressor and the decompressor. In addition, x1 is stored in the compression
result without compressing and is assigned to y1 directly.

3.2 Hybrid Encoder
After floating-points are transformed into quantized differences, the hybrid encoder
is used to compress them. It combines Huffman encoding and variable length quan-
tity (VLQ) to handle various data distributions. Huffman encoding assigns fewer bits
to high-frequency values, while VLQ assigns fewer bytes to close-to-zero values. In

extract Input:
dabacabacbfabbecaa

Val a b c d e f
Freq 7 4 3 1 1 1

\\ a

b

e

d

f
c

Input:
$abacabacb$abb$caa

Uniques:
dfe

+ Val a b c $
Freq 7 4 3 3

a

b
c

$

Figure 3: Removing unique values from Huffman encoder

Fig. 1, we know that the quantized differences are likely to be close to zero in gen-
eral, which is why VLQ is chosen to compress the low-redundancy data that Huffman
encoding is not good at.

With the underlying encoders chosen, the remaining problem is to properly par-
tition the inputs and assign them to the encoders. In fact, the Huffman encoding
already does part of the job. If we use a Huffman encoder to encode all the data, the
low-redundancy data is within the Huffman tree: all presented values are recorded in
the tree leaves exactly once. However, instead of directly using VLQ to compress the
recorded values in the Huffman tree, we add an extra step to extract unique values
(values that appear only once) from the Huffman encoder. Fig. 3 illustrates how to
extract the unique values. After we count the frequencies of each value as the Huff-
man encoding required, we learn the unique symbols, record them in another array,
and replace them with the same special value (’$’ in Fig. 3). After we extract the
unique values and finish the Huffman encoding part, we compress the Huffman tree
values together with the unique values using VLQ. When decoding, we load a unique
value from the array of uniques every time we meet the special value.

Further analysis of the GeoLife dataset [19–21] suggests the high efficiency of our
hybrid encoder. First, the Huffman tree spends much space on recording
present values. There are 181 values on average in a slice of 1000 data. Assuming
the average code length of a value to be 7, then the Huffman code bitstream of the
values is about 875 bytes. Meanwhile, 181 × 4 = 724 bytes are used to record the
presented value in the Huffman tree (values are 32-bit integers). Second, among the
values, 39% of them are unique on average. Unique values are bad cases for
Huffman encoding since they will lead to a long code length, a large Huffman tree,
and a long tree construction time. As a result, it is critical to extract and compress
them in other ways when compressing short-slice data.

3.3 Optimal Variable Length Quantity
Variable length quantity (VLQ, also known as variable length integer) is an encoding
that encodes an integer with a variable length of bytes. It strips heading zeros (or
ones if negative) of the integer (but at least one heading zero/one bit is kept as the
sign bit), saving space when the integer is close to zero. VLQ uses the most significant
bit of each byte to be a flag indicating whether there are more bytes to read and stores
data in the rest bits.

If we put the flag bits scattered in each byte together, we find that VLQ is de facto
using a prefix code to record the byte number, as shown in Tab. 1. Because VLQ is
designed to encode individual integers, each encoded integer needs to be byte-aligned,
that is, having a multiple of 8 bits. However, Machete uses VLQ to encode arrays, so

Table 1: The fixed flag-length mapping due to the byte alignment.

VLQ Format Flag bits Data Length
0 XXXXXXX 0 1 byte (7 bits data)
1 XXXXXXX 0 XXXXXXX 10 2 bytes (14 bits data)
1 XXXXXXX 1 XXXXXXX 0 XXXXXXX 110 3 bytes (21 bits data)
.

the byte-aligned limitation is removed, and the flag-length mapping can be redefined
to improve the compression ratio.

Obviously, for different arrays, there are different optimal mappings that maximize
the compression ratio. We will first formalize the problem of finding an optimal
mapping and then introduce how to solve it. Because flags are either a single ’0’ or
in the form of ’11...10’, given the bit length of a flag, there is one and only one flag
whose length matches. Let L(flag) be the length of the given flag, and f(L(flag)) =
data bit length be a mapping. Let L(δ) be the length of the quantized differences
δ, so that L(δ) = l(l > 0) iff δ ∈ [−2l−1, 2l−1) and δ /∈ −[−2l−2, 2l−2). Specially, let
L(δ) = 1 when δ = 0. Given a mapping f , we can construct a function g(L(δ)) =
L(flag), so that f(g(L(δ))) ≥ L(δ) > f(g(L(δ))−1). It means that using mapping f ,
δ is encoded into g(L(δ)) bits of flag and f(g(L(δ))) bits of data. Then, the encoded
bit length of an array of δ (noted as Aδ) using f is calculated by formula 3:

SIZE(f, Aδ) =
∑

δ in Aδ

(f (g (L (δ))) + g (L (δ))) (3)

An optimal mapping for Aδ is a mapping that minimizes SIZE(f, Aδ). For con-
venience, we will also represent f as an array [f(1), f(2), · · · , f(n)] where n is the
maximum flag length in f ’s domain.

The optimal mapping can be found using dynamic programming. We define sub-
problems as follows: Subproblem SP (l) is to find the optimal fl while assuming all
δ is no longer than l, which means using Ll(δ) = min(L(δ), l) to replace L(δ). Then,
proving the optimal substructure is to prove that if f = [f(1), f(2), · · · , f(n)] is an
optimal mapping of SP (f(n)), then f ′ = [f(1), f(2), · · · , f(n − 1)] is an optimal
mapping of SP (f(n− 1)). This can be proved by contradiction:

Proof. Assume f ′′ = [f ′′(1), f ′′(2), · · · , f ′′(m) = f(n − 1)] is a better mapping than
f ′ of SP (f(n−1)), that is, SIZE(f ′′, Aδ) < SIZE(f ′, Aδ). Then, we construct a new
mapping f ∗ = [f ′′(1), f ′′(2), · · · , f ′′(m), f(n)]. Because SIZE(f, Aδ)−SIZE(f ′, Aδ) =
SIZE(f ∗, Aδ) − SIZE(f ′′, Aδ), we can infer that SIZE(f, Aδ) > SIZE(f ∗, Aδ),
which means f ∗ is better than f and contradicts with that f is optimal. Therefore, f ′

is an optimal mapping of SP (f(n− 1)) if f is an optimal mapping of SP (f(n)).

As a result, we can solve the problem by solving SP (1), SP (2), · · · , SP (lmax)
(where lmax = max(L(δ))) step by step. For SP (1), there is only one possible f ,
which is [f(1) = 1]. Note fl as the optimal mapping of SP (l), then fl is one of the
following: [l], f1 + [l], f2 + [l], · · · , fl−1 + [l], where fx + [l] means appending l to the
fx. And we calculate the SIZE of each candidate to find out the optimal one.

In addition, optimal VLQ also needs to have the optimal mapping recorded. Since
the quantized differences are 32-bit integers, the range of f is [1, 32], so we can use
32 bits to record f by setting the f(1)th, f(2)th, · · · , f(n)th bits.

Table 2: List of time series datasets used for evaluation.

Name Size Decimal Places Error Bound Description

GeoLife 380MB not fixed 1× 10−6 GPS trajectory data dataset collected in GeoLife project [19–21]

System 1.4GB not fixed 1× 10−3 CPU and memory monitor data of our server collected with Telegraf
(https://www.influxdata.com/time-series-platform/telegraf/)

REDD 431MB 2 5× 10−3 Low-frequency part of Reference Energy Disaggregation Data Set [5]

Stock 11GB 3 5× 10−4 Financial data from INFORE project (https://zenodo.org/re-
cord/3886895#.Y3H3QnZBybj)

3.4 Other Improvements
Besides the hybrid encoder and the optimal VLQ, we also have some minor improve-
ment techniques. The first one is the Huffman tree structure compression. Huffman
tree is a complete binary tree, so its structure can be stored by recording its leaf
height from left to right. Transforming the Huffman tree to a canonical tree [22]
makes each leaf no higher than any leaf at its right, thus sorting the leaf height array.
Then, the leaf heigh array the records the tree structure can be easily compressed
with run-length encoding. The second one is the Huffman decode table used by the
ZStandard compressor 1. Unlike a Huffman tree that decodes bit by bit, the decode
table decodes one value within O(1) time, improving the decode speed.

4 Evaluation
The evaluation has two parts, both of which are run in Ubuntu 18.04 on a server with
an Xeon Gold 6154 CPU, 112.5 GiB DRAM, and 7200 rpm disks. In the first part, we
compare Machete with other compressors, and in the second part, we apply Machete
and some other compressors into InfluxDB [12], one of the popular open-source time
series databases (TSDB) to explore the impact.

4.1 Direct Evaluation
We compare Machete with other compressors, including: (1) general purpose lossless
compressors: Zlib2 (also known as GZip) and ZStandard (ZSTD) 1, (2) TSDB loss-
less compressors: Gorilla [9], Chimp128 [13], and Elf [14], and (3) lossy compressors:
LFZip [15], SZ3 [16–18]. In this part, we measure compression ratio (the ratio of
original data size to compress size), compression speed, and decompression speed.
Relatively, the compression ratio and decompression speed matter, just as the discus-
sion in Sec. 2.

And the datasets used are listed in Tab. 2. All data are presented as 64-bit
floating-points, and REDD and Stock have fixed decimal places. Tab. 2 also lists
the default error bound used in our evaluation for all lossy compressors. For GeoLife
and System, the error bound is small enough for most applications. For REDD and
Stock, the error bound is small enough to retrieve the original data by rounding the
reconstructed data to corresponding decimal places. Instead of compressing a dataset
as a whole, we first slice the data into slices no longer than 1000 (which is the slice
length used in InfluxDB) and then compress the slices separately.

Tab. 3 shows the evaluation result with the best record highlighted. Machete
has the absolute advantage in compression ratio, outperforming the second-best by

1https://github.com/facebook/zstd
2https://www.gnu.org/ software/gzip/

Table 3: Evaluations on different datasets
Metric Dataset Zlib ZSTD Gorilla Chimp128 Elf LFZip SZ3 Machete

Compression
Ratio

GeoLife 1.65 1.55 1.58 1.71 3.18 5.99 3.41 7.93
System 20.44 19.50 6.71 4.85 5.18 17.11 15.94 37.98
REDD 11.53 11.17 4.36 4.82 8.38 8.00 5.74 16.48
Stock 5.16 4.68 1.73 3.93 6.50 9.65 11.82 21.22

Compression
Speed (MB/s)

GeoLife 27.2 86.38 994.8 797.7 149.6 6.9 4.9 75.2
System 137.8 439.44 2356.1 1082.2 497.8 10.6 24.4 195.4
REDD 71.5 346.82 1731.5 844.0 176.9 7.8 11.1 120.5
Stock 48.6 194.13 1007.7 843.4 137.4 8.8 8.1 153.2

Decompression
Speed (MB/s)

GeoLife 208.2 358.19 908.8 854.4 538.5 10.0 21.7 954.0
System 469.6 1217.2 2145.8 1198.3 1298.3 15.4 85.2 1940.9
REDD 448.0 845.86 1612.2 1036.3 816.4 12.1 48.9 1348.3
Stock 331.1 526.38 918.6 937.0 457.5 13.1 39.4 1382.7

32%−80%. Meanwhile, the decompression speed of Machete is also in the top tier,
close to Gorilla. Regarding compression speed, Machete has no advantage, but the
evaluation in Sec. 4.2 shows that it is sufficient for a time series database.

In the evaluation, LFZip and SZ3 perform much worse than expected, which is
a result of the short-slice compression. We conduct another similar evaluation with
slice length setting to 216 and found the compression ratio of LFZip and SZ3 getting
close to Machete, and they ran a few times faster. Meanwhile, the performance of
Machete improves only a small amount. In other words, compared to LFZip and SZ3,
Machete suffers less performance drop as the slices get shorter.

4.2 Database Evaluation
In this section, we apply Chimp128, Elf, and Machete into InfluxDB to see the impact
on disk usage, write throughput, and query latency/throughput while using different
compressors. The databases are named DB-Chimp, DB-Elf, and DB-Mach respec-
tively. In addition to the three we just mentioned, there are also DB-Void, which
drops all floating-point data and returns 0 when queried, and DB-Gorilla (Gorilla
is the original compressor of InfluxDB). DB-Void is used to show the upper bound
of the improvement that a compressor can bring to the database. We use the same
dataset lists in Tab. 2 in this part as well.

Disk Usage: We inject the datasets into the databases, and their disk usage is
shown in Fig. 4a. DB-Void shows the space taken by non-floating-point data, i.e.,
timestamps, tags, indices, etc. The difference between DB-Gorilla and DB-Void shows
that the floating-point data take the majority of the space and are hard to compress.
On the other hand, the disk usage of DB-Mach is close to DB-Void. Compared to
DB-Gorilla, DB-Mach saves disk space by 47%−79%. Compared to the second-best
(excluding DB-Void), DB-Mach saves disk space by 24%−69% (or 41%−83% with
space used by DB-Void stripped).

Write Throughput: We record the injection time and calculate the write through-
put of each database. The result is shown in Fig. 4b. Since data write is asynchronous
with data compaction, all database has similar write throughputs even though their
compressors are different in compression speed.

Query Throughput and Latency: We perform massive queries and record
their latencies. The queries ask for simple aggregations of data within a time range,
which are common queries for time series databases. The overall query time is also
recorded for database query throughput. The query throughput and 50-percentile

GeoLife System REDD

0
1
0
0

2
0
0

3
0
0

D
is
k
U
sa
g
e
(M

B
)

Stock

0
2
,0
0
0

4
,0
0
0

(a) Disk Usage. The Stock data-
set uses the y-axis on the right.

GeoLife System REDD Stock
0

200

400

600

W
ri
te

T
h
ro
u
g
h
p
u
t

(·
1
0
3
p
o
in
ts
/
s) DB-Void

DB-Gorilla

DB-Chimp

DB-Elf

DB-Mach

(b) Write Thoughput

GeoLife System REDD Stock
0

20

40

60

Q
u
er
y
T
h
ro
u
g
h
p
u
t

(·
1
0
6
p
o
in
ts
/
s)

(c) Query Throughput

GeoLife System REDD Stock
0

100

200

300

400

Q
u
er
y
L
a
te
n
cy

(m
s,

5
0
-p
er
ce
n
ti
le
)

DB-Void

DB-Gorilla

DB-Chimp

DB-Elf

DB-Mach

(d) 50-Percentile Query Latency
Figure 4: Database Evaluations

query latency are shown in Fig. 4c and 4d. The query throughput of databases is
negatively correlated with disk usage. It suggests all the compressors are fast enough
for InfluxDB, and the disk I/O becomes the bottleneck. Among the databases besides
DB-Void, Machete is the best and outperforms the second-best by 1.4×−3.0×.

5 Conclusion
We propose a lossy floating-point compressor Machete. It is aimed at high compres-
sion ratios while meeting the requirements of time series databases (TSDB). Instead
of improving the predictor accuracy which likely causes high calculation overhead,
Machete uses a simple predictor and focuses on efficient encoder design. The hybrid
encoder it uses combines Huffman encoding and variable length quantity (VLQ), tar-
geting fast processing on short-slice data. In addition, the concept of optimal VLQ
is also proposed to further improve the compression ratio. Our evaluation shows that
Machete outperforms the state-of-the-art compressors in time series database scenar-
ios on compression ratio by 32%−80% with decompression speed similar to TSDB
compressors. When applied to InfluxDB, it saves up to 79% disk space and improves
query performance significantly due to the saved I/O. The source codes are available
at https://github.com/Gyhanis/Machete.git.

Acknowledgements
This work is supported by the Major Key Project of PCL (Grant No. PCL2022A03),
the Shenzhen Science and Technology Program (Grant No. RCYX20210609104510007,
KJZD20230923114610021, and JCYJ20200109113427092), and the National Science
Foundation (Grant No. OAC-2303064, OAC-2247080, OAC-2311876, and OAC-2312673).

References
[1] V. Dhar, C. Sun, and P. Batra, “Transforming finance into vision: concurrent financial

time series as convolutional nets,” Big Data, vol. 7, no. 4, pp. 276–285, 2019.

[2] Y. Zheng and X. Zhou, Computing with spatial trajectories. Springer Science & Busi-
ness Media, 2011.

[3] J. Cheng and M. Mitzenmacher, “The markov expert for finding episodes in time
series.” in DCC, 2005, p. 454.

[4] N. Cruces, D. Seco, and G. Guitérrez, “A compact representation of raster time series,”
in 2019 Data Compression Conference (DCC). IEEE, 2019, pp. 103–111.

[5] J. Z. Kolter and M. J. Johnson, “Redd: A public data set for energy disaggregation
research,” in Workshop on data mining applications in sustainability (SIGKDD), San
Diego, CA, vol. 25, no. Citeseer. Citeseer, 2011, pp. 59–62.

[6] M. Bahari, I. Nejjar, and A. Alahi, “Injecting knowledge in data-driven vehicle tra-
jectory predictors,” Transportation research part C: emerging technologies, vol. 128, p.
103010, 2021.

[7] H. Ren, B. Xu et al., “Time-series anomaly detection service at microsoft,” in Pro-
ceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, 2019, pp. 3009–3017.

[8] K. Shaukat, T. M. Alam et al., “A review of time-series anomaly detection techniques:
A step to future perspectives,” in Future of Information and Communication Confer-
ence. Springer, 2021, pp. 865–877.

[9] T. Pelkonen, S. Franklin, and other, “Gorilla: A fast, scalable, in-memory time series
database,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1816–1827, 2015.

[10] X. Shi, Z. Feng et al., “Byteseries: an in-memory time series database for large-scale
monitoring systems,” in Proceedings of the 11th ACM Symposium on Cloud Computing,
2020, pp. 60–73.

[11] C. Adams, L. Alonso et al., “Monarch: Google’s planet-scale in-memory time series
database,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 3181–3194, 2020.

[12] InfluxData, “Influxdb,” Nov. 2022. [Online]. Available: https://www.influxdata.com/
products/

[13] P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis, “Chimp: efficient lossless float-
ing point compression for time series databases,” Proceedings of the VLDB Endowment,
vol. 15, no. 11, pp. 3058–3070, 2022.

[14] R. Li, Z. Li et al., “Elf: Erasing-based lossless floating-point compression,” Proceedings
of the VLDB Endowment, vol. 16, no. 7, pp. 1763–1776, 2023.

[15] S. Chandak, K. Tatwawadi et al., “Lfzip: Lossy compression of multivariate floating-
point time series data via improved prediction,” in 2020 Data Compression Conference
(DCC). IEEE, 2020, pp. 342–351.

[16] X. Liang, S. Di et al., “Error-controlled lossy compression optimized for high compres-
sion ratios of scientific datasets,” in 2018 IEEE International Conference on Big Data
(Big Data). IEEE, 2018, pp. 438–447.

[17] K. Zhao, S. Di et al., “Optimizing error-bounded lossy compression for scientific data
by dynamic spline interpolation,” in 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2021, pp. 1643–1654.

[18] X. Liang, K. Zhao et al., “Sz3: A modular framework for composing prediction-based
error-bounded lossy compressors,” IEEE Transactions on Big Data, 2022.

[19] Y. Zheng, Q. Li et al., “Understanding mobility based on gps data,” in Proceedings of
the 10th international conference on Ubiquitous computing, 2008, pp. 312–321.

[20] Y. Zheng, L. Zhang et al., “Mining interesting locations and travel sequences from gps
trajectories,” in Proceedings of the 18th international conference on World wide web,
2009, pp. 791–800.

[21] Y. Zheng, X. Xie et al., “Geolife: A collaborative social networking service among user,
location and trajectory.” IEEE Data Eng. Bull., vol. 33, no. 2, pp. 32–39, 2010.

[22] E. S. Schwartz and B. Kallick, “Generating a canonical prefix encoding,” Communica-
tions of the ACM, vol. 7, no. 3, pp. 166–169, 1964.

