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ABSTRACT
Adjoint sensitivity analysis is critical in modern integrated cir-
cuit design and verification, but its computational intensity grows
significantly with the size of the circuit, the number of objective
functions, and the accumulation of time points. This growth can
impede its wider application. The intimate link between the for-
ward integration in transient analysis and the reverse integration
in adjoint sensitivity analysis allows for the retention of Jacobian
matrices from transient analysis, thereby speeding up sensitivity
analysis. However, Jacobian matrices across multiple timesteps are
often so large that they cannot be stored in memory during the for-
ward integration process, necessitating disk storage and incurring
significant I/O overhead. To address this, we develop a memory-
efficient sensitivity analysis method that utilizes data compression
to minimize memory overhead during simulation and enhance anal-
ysis efficiency. Our compression method can efficiently compress
the sparse tensor that contains the Jacobian matrices over time
by exploiting the spatiotemporal characteristics of the data and
circuit attributes. It also introduces a shared-indices technique, a
cutting-edge spatiotemporal prediction model, and robust resid-
ual encoding. We evaluate our compression method on 7 datasets
from real-world simulations and demonstrate that it can reduce the
memory requirements for storing Jacobian matrices by more than
16× on average, which is significantly more efficient than other
state-of-the-art compression techniques.

1 INTRODUCTION
In contemporary integrated circuit design, transient sensitivity
analysis plays a vital role in various domains, including circuit op-
timization [1], performance modeling [2], and yield estimation [3].
The working performance of a circuit is influenced by numerous
critical parameters, such as transistor dimensions, parasitic resis-
tances, capacitances, and more. Sensitivity analysis is a valuable
tool for examining the impact of these factors on system output.
However, the conventional direct method falls short when deal-
ing with a large number of parameters [4]; as a result, the adjoint
method has become the standard in modern circuit simulations.

In large-scale circuit simulations, transient adjoint sensitivity
analysis often results in significant computational overhead. This
arises from the discretization of the dynamic system through numer-
ical integrationmethods, which typically require solving large-scale

differential equations at numerous time points – a process that can
be quite time-consuming. This challenge is particularly prevalent in
modern integrated circuit design. A major portion of the time spent
in the adjoint method is devoted to computing Jacobian matrices
[5]. Therefore, any approach that enables the adjoint method to
bypass these computations could lead to considerable time savings.
Fortunately, the adjoint system and the original system usually
share the same Jacobian matrices. By storing and reusing these
matrices instead of recomputing them, significant reductions in
simulation time can be achieved.

Nonetheless, efforts to speed up sensitivity analysis by retaining
Jacobians during transient analysis result in excessive memory
overhead. Consequently, an alternative approach is to save this
data on disk storage. However, this introduces frequent file I/O
operations and data retrieval processes, leading to considerable time
overhead. Such an approach significantly diminishes the simulator’s
efficiency while also placing substantial demands on disk storage.

To address the aforementioned issues, the introduction of in-
memory compression is crucial. However, existing compression
methods do not adequately exploit the intrinsic characteristics of
data during the simulation process, resulting in suboptimal com-
pression ratios and speeds. It is noteworthy that these matrices form
a tensor along the time dimension, characterized by the following
features: Firstly, each matrix is stored in a sparse storage format,
with row indices and column indices represented as integer arrays,
and non-zero values as floating-point arrays. Secondly, due to the
brief step lengths in numerical integration, there is a significant
correlation between temporally adjacent matrices, essentially mak-
ing these matrices a form of time series data. Furthermore, these
Jacobians are intimately linked to the circuit’s structure.

To this end, we propose a novel lossless compressionmethod that
employs spatiotemporal prediction, effectively enhancing compres-
sion ratios for Jacobians across timesteps. This algorithm skillfully
utilizes the spatiotemporal attributes of Jacobian matrices, enabling
efficient compression of the sparse tensor formed by these matrices.
As a result, it significantly reduces memory overhead in simulations
without sacrificing accuracy. To our knowledge, this represents the
first instance of a data compression-based approach to adjoint sen-
sitivity analysis. It also constitutes the first thorough exploration
of sparse Jacobian matrix compression in the context of SPICE
simulations. Our contributions are summarized as follows:
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• We conduct a comprehensive analysis of data characteristics
in circuit simulation and investigate different floating-point
compression methods from various fields.
• We develop a lossless floating-point compression method based
on a novel spatiotemporal prediction model for Jacobian matri-
ces. We adeptly employ the shared indices technique to address
the storage and computational overhead associated with the
Jacobian matrix indices.
• We evaluate our compression method on 7 real-world datasets,
showcasing its superior performance compared with other lead-
ing compression methods.
• We further employ the proposed compression algorithm into
the sensitivity analysis in SPICE simulator, and demonstrate
memory-efficient acceleration with end-to-end comparison.
The rest of this paper is organized as follows. Section 2 provides

an outline of the research background, and Section 3 discusses
the motivation. In Section 4, we present our compression method,
followed by the MASC design in Section 5. The evaluation results
are detailed in Section 6. We conclude the paper in Section 7.

2 BACKGROUND
2.1 ADJOINT SENSITIVITY ANALYSIS
For sensitivity analysis, the circuit we are interested in can be
represented by a set of Differential Algebraic Equations (DAE):

𝒈(𝒙, 𝑡,𝒑) = 𝑑

𝑑𝑡
𝒒(𝒙,𝒑) + 𝒇 (𝒙,𝒑) + 𝒃 (𝑡,𝒑) = 0, (1)

where 𝒙 ∈ R𝐷 is the state vector, 𝑡 is time, 𝒑 ∈ R𝑀 is the parameter
vector with respect to which we need sensitivities, 𝒒 ∈ R𝐷 and
𝒇 ∈ R𝐷 respectively represent dynamic and static elements, 𝒃 ∈
R𝐷 is the input. It is common to discretize the DAE system using
numerical integration methods such as backward Euler, and then
employ the Newton-Raphson iteration to solve at each timestep.

The objective function is typically a function of the state vector
®𝑥 at one or multiple time points:

𝑶 = 𝜻 (𝒙0, 𝒙1, · · · , 𝒙𝑛). (2)

Then the sensitivity is the derivative of the objective function with
respect to the system parameters p:

𝑑𝑶

𝑑𝒑
=
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Adjoint method is shown as:
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It can be considered as a backward propagation of transient analysis,
withℎ𝑡 as the step size for numerical integration and 𝝋 representing
terms related to the system parameter 𝒑:(
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)
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(5)

Based on (4), it is evident that during the adjoint process, repeti-
tive computations of Jacobian matrices at multiple time points are
required, leading to a significant additional time overhead.

Table 1: Time comparison between transient analysis and sensitivity analysis
and the proportion of Jacobian matrix calculation time in sensitivity analysis.

Circuits Type #Elem #Param #Obj #Steps Tran (s) Sens (s) 𝑇𝑆𝑒𝑛𝑠/𝑇𝑇𝑟𝑎𝑛 𝑇𝐽𝑎𝑐/𝑇𝑆𝑒𝑛𝑠
CHIP_01 BJT 40221 126 8 3738 144.6 595.6 4.1 63.3%
CHIP_02 BJT 58946 183 12 5524 242.4 1969.3 8.1 62.4%
CHIP_03 BJT 100445 351 21 2837 258.8 3279.1 12.7 57.9%
CHIP_04 BJT 132097 398 27 1278 358.5 2449.0 6.8 57.4%
CHIP_05 BJT 165669 421 32 682 89.3 1668.3 18.7 61.6%
CHIP_06 BJT 162440 409 30 552 73.4 148.1 20.2 57.0%
CHIP_07 BJT 226583 512 38 2625 431.5 9413.9 21.8 58.3%
CHIP_08 BJT 289669 602 40 3521 801.6 16032.7 20.0 59.4%
CHIP_09 BJT 316556 728 48 6678 1855.9 38887.5 21.0 60.4%
ram2k MOS 14059 109 12 2330 172.6 438.4 2.5 65.3%
smult20 MOS 46075 254 52 6276 867.7 5107.5 5.9 50.6%
RC_01 RC 117843 324 42 5204 55.9 1959.5 35.1 46.1%
RC_02 RC 153338 387 52 1106 14.7 668.3 45.4 45.9%

2.2 FLOATING-POINT DATA COMPRESSION
Jacobian matrices, which are usually sparse, are often stored in
Compressed Sparse Row (CSR) format, which utilizes integer indices
and floating-point non-zero values. To further reduce the size of
these CSR sparse matrices, compression techniques can be applied
to both the non-zero floating-point values and the integer indices.

General-purpose lossless compression can be divided into two
main categories: (1) Dictionary-based compression, which aims
to reduce spatial redundancy in the input data stream. Examples
include LZ77 and LZW . LZ77 is designed to efficiently encode
locally repeated sequences, while LZW assembles a lexicon of re-
curring data strings, allowing for the substitution of long repeated
patterns with shorter dictionary indices. (2) Entropy-based compres-
sion, which utilizes the entropy/frequency information of the input
for encoding. This category includes methods such as Asymmet-
ric Numeral Systems (ANS) encoding [6] and Huffman encoding
. ANS efficiently compresses data by assigning shorter codes to
more frequent symbols and longer codes to less frequent ones,
while Huffman encoding uses a different encoding strategy which
is building a Huffman tree based on the frequency to generate the
prefix code. While Huffman encoding is simpler and quite effective
for many applications, ANS encoding offers higher efficiency and
adaptability at the cost of increased complexity.

Several significant endeavors, including FPZIP [7], NDZIP [8],
and ZFP [9], have proposed new general-purpose lossless compres-
sors specifically for floating-point data. Each algorithm employs
distinct methodologies to achieve decorrelation of floating-point
data, which is a prerequisite step before the application of various
encoding techniques, including the aforementioned ones or alter-
native, more straightforward encoding methods. However, these
compressors do not consider the specific characteristics of the data
such as Jacobian matrices during decorrelation.

3 MOTIVATION
3.1 TIME-CONSUMING COMPUTATION
Table 1 presents a time comparison between transient analysis
and ajoint sensitivity analysis for circuits of varying scales. This
comparison is made under different numbers of objective functions,
given parameters, and at various time points. Due to the impact of
these factors, the time overhead associated with sensitivity analysis
is substantial, often being several times or even tens of times that
of transient simulation, which is unacceptable.
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Figure 1:Memory cost for storing Jacobians.
Furthermore, in adjoint sensitivity analysis, the computation of

the Jacobian matrix is notably time-consuming. For example, as
shown in Table 1, the time spent on calculating the Jacobian matrix
accounts for about 50%, and in some cases, it can go as high as
about 65%. If the calculation of the Jacobian matrix can be avoided
in the sensitivity analysis process, the efficiency of the sensitivity
analysis can be significantly enhanced.

3.2 HIGH MEMORY COST
By reusing Jacobian from transient analysis, we can significantly
accelerate the sensitivity analysis process. However, this strategy
leads to considerable memory overhead. As illustrated in Figure 1,
in adjoint sensitivity analysis, the storage overhead for Jacobians
can surpass several hundred gigabytes as the scale of the circuit
increases. Consequently, developing a compression method that of-
fers a high compression ratio for Jacobians is essential to effectively
reduce the memory burden during the simulation process.

Furthermore, to enhance the accuracy of simulation results, it
is preferable to employ efficient lossless compression during the
simulation process rather than lossy compression. The use of lossy
compression could lead to significant cumulative errors.

4 SPATIOTEMPORAL PREDICTION BASED
COMPRESSION FRAMEWORK

To minimize memory overhead during simulation, we propose an
innovative approach for effectively compressing sparse Jacobians.
The complete workflow of our compression method is depicted in
Figure 2. We employ sparse storage formats, such as CSR, to store
the Jacobian matrix. Considering that the values in the index array
are integers and the non-zero element array comprises floating-
point numbers, we discuss their compression separately.

4.1 SHARED INDICES
First, let us briefly discuss the compression and storage of indices.
By observing the stamping process of the Jacobian matrix, we can
notice that the structure of all matrices is identical. Therefore, we
have ingeniously employed a technique called “Shared Indices” to
effectively reduce the computational and storage overhead of the
index arrays. Since all Jacobian matrices share a common set of
row and column index, we place them in heap memory to ensure
a longer lifecycle. If further compressing index arrays is desired,
delta encoding can first be utilized to convert large integers into
smaller ones, and then variable-length encoding can be applied to
achieve efficient compression of indices.

4.2 SPATIOTEMPORAL PREDICTION MODEL
The primary challenge in compressing Jacobians lies in the efficient
compression of non-zero element arrays. In this section, we intro-
duce an efficient lossless floating-point compression method based
on a novel hybrid prediction model to address this challenge.

Temporal Prediction Model. Due to the significant temporal
correlations present in Jacobian matrices, our predictor employs
the temporal prediction model to effectively capture and address
these temporal dependencies.

In time-series compression, the typical approach is to compute
the predictive value using historical data points[10]. We expand
this concept to the spatial dimension by employing a neighboring
time point matrix to predict the current matrix 𝑴𝑡 , where 𝑴̂𝑡 =

𝑴𝑡+1. However, using multiple adjacent matrices to predict the
current matrix is not feasible, as storing the historical information
of several matrices would result in a substantial increase in memory
overhead. Therefore, during the forward integration process, we
store the Jacobianmatrix at time 𝑡𝑛 for use at time point 𝑡𝑛+1, relying
solely on Jacobian matrices from adjacent time points for predictive
modeling. Subsequent difference computation can eliminate the
data redundancy introduced by linear elements.

Spatial Prediction Model. In the spatial dimension, we estab-
lish the prediction model, termed the “stamping-based prediction
model”, aligning with the Jacobian matrix construction method-
olog, i.e. MNA, as illustrated in Figure 3(a). The Jacobian matrix is
essentially an aggregate of the stamps from all the elements in the
circuit [11].

A typical matrix stamp can be characterized by the set {𝑆 (𝑖, 𝑖),
𝑆 (𝑖, 𝑗), 𝑆 ( 𝑗, 𝑖), 𝑆 ( 𝑗, 𝑗)}. The four elements in this set are derived
from the same element’s contribution to the matrix, demonstrating
a significant interdependence among them. For example, in linear
resistors and capacitors, there exists a relationship such that 𝑆 (𝑖, 𝑖) =
𝑆 ( 𝑗, 𝑗) = −𝑆 (𝑖, 𝑗) = −𝑆 ( 𝑗, 𝑖).

Similarly, we examine four non-zero elements at corresponding
positions in the matrix, forming a pattern described by the set
{𝑉 (𝑖, 𝑖),𝑉 (𝑖, 𝑗),𝑉 ( 𝑗, 𝑖),𝑉 ( 𝑗, 𝑗)}. One of the values in this set can
be predicted using the other values. The design of our prediction
model is structured as follows:


𝑉𝑝 (𝑖, 𝑗) = 𝑒𝑣𝑎𝑙 (𝑉 ( 𝑗, 𝑖),−𝑉 (𝑖, 𝑖),−𝑉 ( 𝑗, 𝑗))
𝑉𝑝 ( 𝑗, 𝑖) = 𝑒𝑣𝑎𝑙 (−𝑉 (𝑖, 𝑖),−𝑉 ( 𝑗, 𝑗))
𝑉𝑝 ( 𝑗, 𝑗) = 𝑉 (𝑖, 𝑖)

(6)

Due to the unique nature of the values in the matrix stamp of
different elements, we do not employ the Lorenz predictor scheme,
in contrast to the approaches used in NDZIP and FPZIP. Instead,
we independently evaluate the similarity between the true value
and the other values in the matrix stamp. We use an evaluation
function to select the value that is closest to the true value as the
prediction result for this model. Notably, the non-zero elements
on the main diagonal of the Jacobian matrix in simulations often
have sign bits opposite to those in other regions. To capitalize on
this, we invert the sign bits of the elements on the main diagonal,
leading to a higher compression ratio during the encoding phase.
Figure 3(b)(c)(d) outlines the workflow of our predictor. A more
detailed explanation will be provided in the next section.
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Markov predictor. To minimize the time overhead involved
in selecting the best-fit prediction model, we innovatively employ
Markov models. This approach is based on our observation of reg-
ularity in the selection of prediction models, due to strong spa-
tiotemporal dependencies in the data. Specifically, we record the
predictor’s decision history during the best-fit phase in a histori-
cal table, estimate probabilities using frequency, and then utilize
a Markov predictor to directly make predictions for the choice of
prediction models (as shown in Figure 4). This design not only re-
duces the compression time overhead but also significantly lessens
the extra space overhead incurred by recording the selection of pre-
diction models, though there may be a slight decrease in prediction
accuracy (see detail in Table 3).

(a)An example of matrix stamp for
a resistor

(b) Prediction for the strictly upper 
triangular region

(c) Prediction for the strictly lower
triangular region

(d) Prediction for the diagonal region
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Figure 3:Matrix stamp and proposed spatiotemporal prediction model.
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4.3 EFFICIENT RESIDUAL CODING
Figure 5 shows the encoding process for non-zero elements. The
compressor reads the actual value from the front of the compression
queue and the predicted value from the hybrid predictor, then
performs an XOR operation between them to generate the residual.
Subsequently, the encoder encodes these residuals. Since the actual
and predicted values are usually very close, the residuals often
contain numerous leading and trailing zeros. Hence, effectively
encoding these zero bits can result in a significant compression
ratio for the floating-point data.

We perform a statistical analysis of the residual characteristics
across multiple datasets and developed an efficient residual en-
coding scheme, as shown in Figure 5(a). Figure 5(b) displays the
distribution of leading zeros in the residuals, indicating that ap-
proximately 60% of the residuals comprise 64 consecutive zero bits,
this also robustly validates the effectiveness of our spatiotemporal
prediction model. Consequently, we utilize just 1 bit to represent
this scenario. Given that fewer than 2% of the residuals have fewer
than 8 leading zeros, we use 3 bits for encoding the number of lead-
ing zeros, treating it as 0 if the count of leading zero bits is between
0 and 7. Moreover, if the meaningful bits of the current residual
are within the range of the previous residual’s meaningful bits, the
encoding of leading zeros can be shared. Once the encoding process
is completed, these bits are concatenated and stored in a buffer.

Overview of our proposed compressionmethod. Finally, our
complete spatiotemporal compression method is presented in Algo-
rithm 1. Specifically, we compress𝑴𝑡 at the 𝑡 + 1 time point during
the transient simulation process, using 𝑴𝑡+1 as the prediction ma-
trix. Due to the strong symmetry of the Jacobian matrix, we divide
the original matrix into three regions: the strictly upper triangular
region, the strictly lower triangular region, and the diagonal region.
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The non-zero elements in these regions correspond to three sets𝑈 ,
𝐿, and 𝐷 , respectively. Following the matrix stamp-based predic-
tion model, we sequentially compress the floating-point numbers in
these sets. To minimize bit wastage in encoding prediction results
in set 𝐿 and enhance prediction accuracy, we employ a last value
predictor [12]. This predictor selects the neighboring non-zero ele-
ment in the same row as the matrix’s true value for the predicted
value. Ultimately, it chooses the prediction closest to the true value
from multiple prediction models as the final prediction value.

5 ACCELERATING ADJOINT SENSITIVITY
SIMULATION USING COMPRESSION

Integrating the SPICE simulation process with efficient data com-
pression techniques substantially improves the efficiency of sensi-
tivity analysis and adeptly tackles the issue of memory overhead. It
is important to note that in scenarios with ample computational re-
sources, the proposed design offers potential for parallel execution.

The complete simulation workflow is depicted in Algorithm 2.
In the transient analysis, data compression and storage are imple-
mented. Initially, shared indices are obtained during the calculation
of the circuit’s DC operating point. During transient simulation,
the Jacobian matrix at 𝑡𝑛 is stored to 𝑡𝑛+1, and compression of 𝑴𝑛

occurs at 𝑡𝑛+1. This ensures that during the reverse integration pro-
cess, data decompression is conducted in a reverse manner. Data
decompression and memory release are performed during sensitiv-
ity analysis. Assuming the objective function is a function of the
system’s final state, we decompress 𝑴𝑛−1 at 𝑡𝑛 for subsequent ad-
joint sensitivity analysis at 𝑡𝑛−1. At this point, 𝑴𝑛 can be released,
thereby reducing memory overhead.

6 EXPERIMENTAL EVALUATION
In this section, we present our evaluation results. We start by de-
scribing our experimental setup. Next, we examine the compres-
sion ratio and time of our proposed compression method. We then

Algorithm 1: Compressing a Jacobian Matrix 𝑴𝑡 .
Input: 𝑴𝑡 and 𝑴𝑡+1
Output: Compressed 𝑴𝑡

1: Partition 𝑴𝑡 , obtain𝑈 , 𝐿, and 𝐷 , initiate compression task for these
three sequentially, involving 𝑁 floating-point values.

2: for (𝑉𝑖 , 𝑖 = 0, 1 · · ·𝑁 − 1) do
3: if 𝑠𝑜𝑙 = 𝑏𝑒𝑠𝑡 𝑓 𝑖𝑡_𝑠𝑜𝑙 then
4: 𝑉̂

(𝑇 )
𝑖
← 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 , 𝑉̂ (𝑆 )

𝑖
← 𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑡𝑎𝑚𝑝 .

5: if 𝑉𝑖 ∈ 𝐿 then
6: 𝑉̂

(𝐿)
𝑖
← 𝐿𝑎𝑠𝑡𝑉𝑎𝑙𝑢𝑒 .

7: end if
8: 𝑠𝑜𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑃={(𝑇 ),(𝑆 ),(𝐿) }
( |𝑉̂ 𝑃

𝑖
− 𝑉𝑖 | )

9: if 𝑉𝑖 ∈ 𝐷 then
10: Use 1 bit to record the bestfit prediction model.
11: else
12: Use 2 bits to record the bestfit prediction model.
13: end if
14: else if 𝑠𝑜𝑙 = 𝑀𝑎𝑟𝑘𝑜𝑣_𝑠𝑜𝑙 then
15: 𝜋∗ ← 𝑀𝑎𝑟𝑘𝑜𝑣𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 , 𝑠𝑜𝑙 = 𝜋∗.
16: end if
17: 𝑅𝑒𝑠𝑖 = 𝑉̂ 𝑠𝑜𝑙

𝑖
⊕ 𝑉𝑖 , encode the residual,write it into the buffer.

18: end for

Algorithm 2: Proposed MASC sensitivity simulation.
Input: Input netlist
Output: Sensitivity analysis results 𝑑𝑶

𝑑𝒙
1: Parse netlist and begin transient simulation.
2: while 𝑡𝑛 ≤ 𝑡𝑓 do
3: if 𝑡𝑛 = 𝑡0 then
4: Compute DC operating points; get shared indices; store 𝑴0.
5: else
6: Transient analysis at 𝑡𝑛 ; compress 𝑴𝑛−1 using 𝑴𝑛 ; store 𝑴𝑛 .
7: end if
8: end while
9: End transient simulation and begin sensitivity simulation.
10: while 𝑡𝑛 ≥ 𝑡0 do
11: Adjoint sensitivity analysis at 𝑡𝑛 .
12: Decompress 𝑴𝑛−1 using 𝑴𝑛 ; free memory for 𝑴𝑛 .
13: end while

Table 2: Detail of our test datasets.

Dataset #CirElem #Steps 𝑆𝐶𝑆𝑅(GB) 𝑆𝑁𝑍 (GB) CR (gzip) 𝑇𝑐𝑜𝑚𝑝(gzip)
add20 5091 42799 9.09 5.80 2.52 164.60s
smult20 46075 9048 22.99 14.37 5.85 211.17s
mem_plus 217431 13124 18.38 11.56 13.04 114.64s
MOS_T5 902631 8680 40.13 24.32 2.00 736.68s
MOS_T7 175487 25280 163.68 99.20 1.81 3076.71s
MOS_T8 494077 12740 177.48 111.62 1.97 3366.62s
MOS_T10 224398 20592 208.08 129.24 1.98 3827.76s

demonstrate the effectiveness of our prediction models and con-
clude by showcasing the overall end-to-end performance of MASC
in sensitivity analysis simulations with integrated compression.

6.1 EXPERIMENTAL SETUP
Platform and software. Experiments are conducted on a Linux
server with an AMD EPYC 7702 CPU at 2.0 GHz, 512 GB of RAM,
and a Micron 5100 SSD, running Ubuntu 20.04. We implement our
proposed compressor in C++ and develop its parallel version using
OpenMP. It is available at [13]. We implement MASC based on Xyce
[14], a high-performance, SPICE-compatible circuit simulator.
Datasets. We evaluate the performance of our compression on
seven datasets, as shown in Table 2, all generated from actual simu-
lations. Specifically, #CirElem and #Steps represent the number of
circuit elements and discrete time points, respectively; 𝑆𝐶𝑆𝑅 denotes
the space required to store all Jacobian matrices in CSR format; and
𝑆𝑁𝑍 indicates the space occupied by all non-zero elements in the
matrices, which is the primary focus of our compression evaluation.
Baselines. We compare the performance of our proposed com-
pressor with that of the general compressor GZIP , two advanced
floating-point compressors (FPZIP [7] and NDZIP [8]), and the lossy
compressor SpiceMate [15] from the EDA domain.

6.2 COMPRESSION PERFORMANCE
First, we evaluate the performance of our proposed compression
method and compare it with the aforementioned baselines. Table
3 demonstrates that our spatiotemporal compression significantly
surpasses other compression methods, achieving a compression
ratio 4.95× higher than SpiceMate and 2.24× higher than FPZIP.
This superior performance can be attributed to the effective ex-
ploitation of the spatiotemporal characteristics of sparse tensors.
In terms of compression time, the average compression time of our
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Table 3: Comparison of compression ratio, compression time (in seconds), and decompression time (in seconds) for different compression methods.

Dataset
FPZIP [7] NDZIP [8] SpiceMate [15] MASC w/o Markov MASC w/ Markov

CR 𝑇𝑐𝑜𝑚𝑝 𝑇𝑑𝑒𝑐𝑜𝑚𝑝 CR 𝑇𝑐𝑜𝑚𝑝 𝑇𝑑𝑒𝑐𝑜𝑚𝑝 CR 𝑇𝑐𝑜𝑚𝑝 𝑇𝑑𝑒𝑐𝑜𝑚𝑝 CR 𝑇𝑐𝑜𝑚𝑝 𝑇𝑑𝑒𝑐𝑜𝑚𝑝 CR 𝑇𝑐𝑜𝑚𝑝 𝑇𝑑𝑒𝑐𝑜𝑚𝑝

add20 4.92 34.02 39.18 1.05 179.33 176.31 2.24 113.07 60.79 11.90 44.54 29.93 10.59 40.09 27.24
smult20 4.66 86.97 95.85 1.04 215.22 211.95 5.01 127.17 67.56 11.07 105.96 74.46 10.04 87.83 70.74
mem_plus 5.31 57.94 66.24 1.01 168.35 163.47 8.68 86.72 56.48 11.51 83.70 61.54 10.27 65.40 59.52
MOS_T5 14.53 86.16 107.92 1.10 341.78 342.76 1.96 422.36 91.60 35.32 161.40 142.80 32.32 124.29 135.16
MOS_T7 9.78 407.06 484.42 1.14 1454.23 1443.15 1.88 1740.08 444.01 20.65 739.97 594.45 19.62 643.77 563.20
MOS_T8 4.80 646.84 726.27 1.06 1603.85 1505.99 1.97 1998.04 574.19 9.91 880.75 676.13 9.02 702.21 631.28
MOS_T10 8.46 542.52 624.24 1.12 1845.00 1848.24 2.00 2103.76 497.17 17.19 967.68 820.08 16.16 872.85 796.54
Average 7.49 265.93 306.30 1.07 829.68 826.64 3.39 941.60 255.97 16.79 426.28 342.77 15.43 362.34 326.24

spatiotemporal compression method is about 25% of that of GZIP,
although it is slower than FPZIP. This slower speed is due to the
matrix partitioning step in our spatiotemporal compression method.
Despite this, the compression efficiency is remarkably high. Over-
all, the performance of our spatiotemporal compression method
satisfactorily meets the demands of simulation processes.
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Figure 6: Statistics analysis of selection rate for three prediction models.

6.3 EFFECTIVENESS OF PREDICTION MODELS
We then evaluate the effectiveness of three prediction models, as
illustrated in Figure 6. Specifically, the temporal prediction model
was selected with a frequency exceeding 60% in certain datasets,
indicating that temporal dependencies are more significant than
spatial dependencies in these datasets. In datasets exhibiting regular-
ity in the spatial dimension, the matrix stamping-based prediction
model was chosen with a frequency close to 60%, confirming the
effectiveness of this model. Concurrently, the last value prediction,
introduced to improve prediction accuracy, was selected with a
frequency of around 10%, validating its necessity in the model.

6.4 END-TO-END PERFORMANCE OF MASC
Finally, we assess the end-to-end performance of our proposed sim-
ulator, MASC, and compare it with Xyce [14]. As Figure 7 illustrates,
MASC achieves approximately a 50% reduction in time overhead for
sensitivity analysis compared to the original simulation Xyce. This
improvement is primarily due to MASC’s in-memory compression
scheme, which efficiently circumvents the significant time over-
head involved in repeatedly computing the Jacobian matrix during
the reverse process. When comparing MASC to simulations that
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Figure 7: End-to-end simulation time reduction ofMASC compared to baselines.

directly save Jacobian matrices to disk rather than using in-memory
compression, MASC demonstrates 6× end-to-end performance im-
provement. This notable performance boost is attributed to two
factors: (1) our compression method leads to over an 80% reduction
in the overhead associated with storing Jacobian matrices on disk,
and (2) the speed of our parallel compressor is considerably high
(∼2.3 GB/s), far surpassing the SSD’s bandwidth (∼0.5 GB/s), which
ensures minimal additional time overhead in simulations. Note that
the speed of our parallel (de)compression increases rapidly with
the number of threads, peaking at around 16 threads. At this point,
the parallel speed is more than 8× of the serial speed.

7 CONCLUSION
In this paper, we seamlessly integrate data compression into simu-
lation processes, utilizing Jacobian matrices stored during forward
integration to expedite the reverse adjoint sensitivity solving pro-
cess. Concurrently, we develop a novel lossless compressionmethod
that significantly reduces memory overhead during the simulation.
The time overhead of our MASC is approximately half of that
with Xyce. Furthermore, our compression method exhibits remark-
able enhancements compared to general compression methods and
state-of-the-art floating-point compression methods, effectively
minimizing memory overhead during the simulation process.
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